2012-05-19 09:30:22Morris

[UVA][Tree] 712 - S-Trees


  S-Trees 

A Strange Tree (S-tree) over the variable set $X_n = {x_1, x_2, dots, x_n}$ is a binary tree representing a Boolean function $f: {0, 1}^n rightarrow { 0, 1}$. Each path of the S-tree begins at the root node and consists of n+1 nodes. Each of the S-tree's nodes has a depth, which is the amount of nodes between itself and the root (so the root has depth 0). The nodes with depth less than n are called non-terminal nodes. All non-terminal nodes have two children: the right child and the left child. Each non-terminal node is marked with some variable xi from the variable set Xn. All non-terminal nodes with the same depth are marked with the same variable, and non-terminal nodes with different depth are marked with different variables. So, there is a unique variable xi1 corresponding to the root, a unique variable xi2 corresponding to the nodes with depth 1, and so on. The sequence of the variables $x_{i_1}, x_{i_2}, dots, x_{i_n}$ is called the variable ordering. The nodes having depth n are called terminal nodes. They have no children and are marked with either 0 or 1. Note that the variable ordering and the distribution of 0's and 1's on terminal nodes are sufficient to completely describe an S-tree.

As stated earlier, each S-tree represents a Boolean function f. If you have an S-tree and values for the variables $x_1, x_2, dots, x_n$, then it is quite simple to find out what $f(x_1, x_2, dots, x_n)$ is: start with the root. Now repeat the following: if the node you are at is labelled with a variable xi, then depending on whether the value of the variable is 1 or 0, you go its right or left child, respectively. Once you reach a terminal node, its label gives the value of the function.

Figure 1: S-trees for the function $x_1 wedge (x_2 vee x_3)$

On the picture, two S-trees representing the same Boolean function, $f(x_1, x_2, x_3) = x_1 wedge (x_2 vee x_3)$, are shown. For the left tree, the variable ordering is x1, x2, x3, and for the right tree it is x3, x1, x2.

The values of the variables $x_1, x_2, dots, x_n$, are given as a Variable Values Assignment (VVA)

begin{displaymath}(x_1 = b_1, x_2 = b_2, dots, x_n = b_n)
end{displaymath}

with $b_1, b_2, dots, b_n in {0,1}$. For instance, ( x1 = 1, x2 = 1 x3 = 0) would be a valid VVA for n = 3, resulting for the sample function above in the value $f(1, 1, 0) = 1 wedge (1 vee 0) = 1$. The corresponding paths are shown bold in the picture.

Your task is to write a program which takes an S-tree and some VVAs and computes $f(x_1, x_2, dots, x_n)$ as described above.

Input 

The input file contains the description of several S-trees with associated VVAs which you have to process. Each description begins with a line containing a single integer n, $1 le n le 7$, the depth of the S-tree. This is followed by a line describing the variable ordering of the S-tree. The format of that line is xi1 xi2 ...xin. (There will be exactly n different space-separated strings). So, for n = 3 and the variable ordering x3, x1, x2, this line would look as follows:

x3 x1 x2

In the next line the distribution of 0's and 1's over the terminal nodes is given. There will be exactly 2n characters (each of which can be 0 or 1), followed by the new-line character. The characters are given in the order in which they appear in the S-tree, the first character corresponds to the leftmost terminal node of the S-tree, the last one to its rightmost terminal node.

The next line contains a single integer m, the number of VVAs, followed by m lines describing them. Each of the m lines contains exactly n characters (each of which can be 0 or 1), followed by a new-line character. Regardless of the variable ordering of the S-tree, the first character always describes the value of x1, the second character describes the value of x2, and so on. So, the line

110

corresponds to the VVA ( x1 = 1, x2 = 1, x3 = 0).

The input is terminated by a test case starting with n = 0. This test case should not be processed.

Output 

For each S-tree, output the line ``S-Tree #j:", where j is the number of the S-tree. Then print a line that contains the value of $f(x_1, x_2, dots, x_n)$ for each of the given m VVAs, where f is the function defined by the S-tree.

Output a blank line after each test case.

Sample Input 

3
x1 x2 x3
00000111
4
000
010
111
110
3
x3 x1 x2
00010011
4
000
010
111
110
0

Sample Output 

S-Tree #1:
0011

S-Tree #2:
0011


模擬也很有 feel !

#include <stdio.h>

int main() {
int t = 0, x, i, n, m, k;
char f[513], str[10];
while(scanf("%d", &n) == 1 && n) {
printf("S-Tree #%d:\n", ++t);
int fa[10], fb[10];
for(i = 1; i <= n; i++) {
scanf("%s", str);
sscanf(str+1, "%d", &x);
fa[x] = i;
}
scanf("%s", f);
scanf("%d", &m);
while(m--) {
scanf("%s", str+1);
for(i = 1; i <= n; i++)
fb[fa[i]] = str[i]-'0';
for(i = 1, k = 1; i <= n; i++) {
if(fb[i])
k = k<<1|1;
else
k = k<<1;
}
putchar(f[k-(1<<n)]);
}
puts("\n");
}
return 0;
}