中國海軍潛艇全集
海軍潛艇部隊是中國國防力量的重要組成部分,很多朋友對潛艇很感興趣,但是對她的瞭解比較少甚至出現把外軍的潛艇當成我們自己的現象,經過幾天的準備,我把中國海軍潛艇全部型號的資料整理出來,不求量多,只求大家能有個大概的瞭解,不會再出現認錯的情況。另外,對於潛艇的編號雖然網上都可以查到資料,但畢竟是保密得,我覺得還是少講一些,主要從潛艇外觀上作介紹。
言歸正傳,先簡要回顧一下我軍潛艇部隊簡史:
潛艇部隊是在水下遂行作戰任務的海軍兵種,具有良好的隱蔽性,較強的突擊力,能長期在水下作戰,是海軍的重要作戰力量。中國海軍潛艇部隊自1954年6月成立獨立潛艇大隊以來,現已發展成為包括常規動力潛艇部隊和核動力潛艇部隊在內的強大水下力量。
1950年8月,海軍在北京召開建軍會議,確定了“以現有力量為基礎,重點發展海軍航空兵、潛艇和魚雷快艇等新力量(簡稱‘空、潛、快’),逐步建設一支強大的海軍”的建軍方針,決定優先建設潛艇部隊。1951年4月20日,海軍選調275名幹部、戰士組成潛艇學習隊,到蘇聯海軍太平洋艦隊駐旅順老虎尾的潛艇分隊學習。1952年5月,第一個潛艇基地在青島開始修建。1953年8月20日,海軍潛艇學校在青島成立。
1954年6月19日,以旅順潛艇學習隊基礎,海軍第一支潛艇部隊——海軍獨立潛艇大隊在青島成立。6月24日,海軍獨立潛艇大隊接收了2艘蘇聯M級老式小型潛艇,命名為“新中國11號”和“新中國12號”。7月,又接收了2艘蘇聯“史達林”級(C級)中型潛艇,命名為“國防21號”和“國防22號”,並開始執行遠航巡邏警戒任務。1955年9月,獨立潛艇大隊改編為潛艇第一支隊,1958年底擴編為3個支隊。到1976年,海軍3個艦隊都組建了常規動力潛艇支隊。1975年2月,第一支核動力潛艇支隊在北海艦隊正式組建。
海軍潛艇部隊成立初期,只有4艘從蘇聯購買的二戰時期老掉牙的潛艇,難以擔負保衛共和國海防的重任。1953年6月4日,中國和蘇聯政府簽訂了“海軍訂貨協定”,蘇聯向中國有償轉讓W級常規動力攻擊潛艇建造權,提供成套器材設備和設計圖紙資料,由中國船廠裝配製造,並派專家來華指導。1956年3月26日,中國裝配製造的第一艘W級潛艇下水,1957年10月驗收入列,代號為03型。截止到1963年,中國共生產了數21艘03型潛艇。通過轉讓製造,不僅使海軍潛艇部隊裝備了較先進的潛艇,而且使中國造艦工業形成了潛艇規模生產能力,為中國潛艇的進一步發展創造了有利條件。
03型(W 級)[注:字母一般是北約等西方國家給我們潛艇的代號]
6603型常規動力攻擊潛艇,也就是通常所說的03型。這是我國自行建造的第一種中型常規動力潛艇,其前身為蘇聯海軍613型(西方稱之為Whiskey級、簡稱W級)。根據1953年6月4日中蘇簽訂的64協定,蘇方有償貯轉讓613型潛艇的建造權,提供相應的成套器材設備和設計圖紙。我國將其稱為6603型,簡稱03型。首艇於1955年4月在江南造船廠開工建造,1956年3月下水,1957年10月交付部隊使用,1958年正式列入作戰序列,艇名為新中國15號。該艇是毛主席視察過的唯一的潛艇,因此曾用過56—110的舷號。至1964年江南造船廠共建造13艘,至1962年武漢造船廠共建造8艘,總計21艘。其中圍殼前裝雙聯25毫米炮的613—IV型建造5艘,沒有火炮的V型建造16艘。另曾向阿爾巴尼亞出口4艘、向孟加拉出口4艘、向埃及出口4艘、向巴基斯坦出口4艘。 該型艇於九十年代全部退役。
排水量: 1050噸(水上),1342噸(水下)
主尺度:長74.7米,寬7.3米。吃水4.3米
主機:4000馬力
航速: 18節(水上),13節(水下)
最大潛深:200米
編制:53人
魚雷:6具533毫米發射管(艇首4具,艇尾2具), 12條。
水雷:22枚
火炮:25毫米雙管火炮2門
6633型常規動力攻擊潛艇,也就是通常所說的33型。其前期身為蘇聯海軍633型(西方稱之為Romeo級、簡稱R級)。根據1959年2月4日中蘇簽訂的二四協定,蘇聯有償提供633型建造權,我國將其稱為6633型簡稱33型。1960年12月江南造船廠和武漢造船廠相繼開工建造,江南廠首艇於1963年8月21日下水,武漢廠首艇1964年10月29日下水。至1987年交付部隊的304艇,33型共建造106艘,其中江南廠47艘、武漢廠42艘、黃埔廠13艘、涪陵廠3艘、渤海廠1艘。另向埃及出口4艘、轉讓朝鮮4艘、轉讓朝鮮半成品12艘。
03和033的外观区别很容易看出:除了身材033较为丰满外,艇首03比较尖还是二战时期潜艇的风格,指挥塔也不相同。
自1979年底起,中國就開始了潛地固體戰略導彈的研製。1982年10月12日,中國第一枚潛地固體戰略導彈“巨浪-1號”首次由031型(G級)常規動力導彈潛艇水下發射試驗成功。中國一躍成為世界上第5個擁有水下發射戰略導彈能力的國家。這在國際上引起了巨大的反響。
031型(G級)又稱6631只造了一艘舷號:200,性能如下
排水量:水面2350噸,水下2950噸
主尺度:長98米,寬8.5米,吃水 米
動 力:3台MTU12V493柴油機,
航 速:17節(水面),13節(水下)
武 器:2枚JL-1彈道導彈,射程3800千米。
現役1艘服役于北海艦隊
由於必須在水面發射導彈,已不能適應現代實戰的要求,此型艇未曾批量生產,但為中國發展潛艇水下發射飛航導彈設計技術積累了有益的經驗。
性能如下:
排水量:排水量水面1350噸,水下2100噸
主尺度:艇長76.6米,寬7.6米,吃水5.2米
動 力:兩台柴油機,兩台主推進電機,直接傳動方式,雙軸,雙漿,2700馬力
航 速:水面航速15節,水下航速13節
續航力:8500海裏/10節
編 制:編制58人
武 器:導彈:C801反艦導彈6枚(只能水面發射),魚雷發射管:艇艏6管,艇艉2管533毫米魚雷,可攜帶28枚魚雷
聲 納:TAMIR(泰米爾)-5型主動聲納
在R級(33型)潛艇的中部耐壓殼體的外部增設3組C801箱式導彈發射筒,每組2個發射筒,增加了自動測風儀、方位水準儀和雷彈合用射擊指揮系統,改裝了雷達。但C801必須在水面發射。33G1於1983年在武昌造船廠建成交付海軍。但此級潛艇僅改裝一艘。
隨著潛艇數量的增多和電子設備的發展,海軍潛艇部隊活動範圍逐步擴大延伸至太平洋西部和中部海域。1976年12月,東海艦隊252艇首次突破第一島鏈進入太平洋西部進行遠航訓練,吹響了中國海軍向太平洋進軍的號角。1980年3月,東海艦隊256艇又突破第二島鏈進入太平洋中部,標誌著中國海軍潛艇部隊已具備中遠海作戰能力。
中國自行研製的第一代產品(035型) 就是在這種條件下產生的。實際上是針對母型艇水下航速低而瞄準了國外高速潛艇,以大幅度提高水下航速和續航力為重點的型號研製。到70年代末,中國已逐步形成了從科研設計到生產,從總體到材料設備,從試驗到使用維修的完整體系和全國範圍的配套協作網,基本完成了第一代潛艇的自行研製任務。1983年該型艇通過了國家鑒定,達到了預期目標。
第一代常規潛艇(035)的總體綜合作戰性能並不高,但對中國自行研製潛艇是一個重要的開端。80年代中期,根據軍隊建設指導思想的轉變及裝備體制的調整及時地將33型現代化改裝調整到對035型的現代化改裝上來,凡是已研製成功並試驗可靠的項目,也可研究應用於035潛艇。經過以提高作戰能力為中心的現代化改裝的035潛艇已成為中國海軍的一型主力潛艇。
1967年由中央軍委批准,自行研製的中國第一代常規動力魚雷攻擊潛艇。研製的中心任務是盡最大努力提高水下航速。為實現這一目標,在降低阻力、提高推進效率和增大推進功率三個主要方面開展了大量的研究、試驗。035型潛艇首制艇於1969年10月開工,1974年4月交付海軍使用。1979—1989年與1992—1994年間曾兩度停建,進行現代化改裝型艇的設計,要求在保持原035型潛艇總體性能基本不變的前提下,在武器系統、水聲設備、通信設備、導航設備、水聲對抗、雜訊控制、改善生活和工作條件等方面,進行多方面的改進,使艇的作戰能力、生存能力以及機動性、隱蔽性、可靠性、安全性等均有一定程度的提高。改進艇於1988年8月開工, 1990年底交艇,1993年定型,至今已建造了一小批交付海軍使用。共建造了14艘,第14艘的舷號為363。上海滬東造船廠建造。尺度:長76*寬7.6*吃水5.1米。該艇第一次採用了尖尾線型,合理佈置了上層建築的管路和閥件,縮小了甲板的空間,改進了流水孔,設計了高效率螺旋槳等。採用了航向自動舵儀和深度自動舵儀,在所有航速範圍內潛艇保證有正常的操縱性。
035有很多改進型, 首制艦為ES5C型、修改後至79年為ES5D型、83年後為ES5E型 。
現在還在不停的改進中主要性能資料
排水量:水面1584噸,水下2113噸
主機:GE390-ZC-1型中速柴油機,5200馬力,單軸、單槳
航 速:水面15節,水下18節
編 制:57人(軍官10人)
武 器:16枚魚雷(或32枚水雷)
續航力:330/4節
潛深:300米
首制艦為ES5C型、修改後至79年為ES5D型、83年後為ES5E型
http://www.zgjunshi.com/Article/Class38/Class49/Class134/200410/20041010141323.html
排水量:1,700噸(水上);2,250噸(水下)。
主體尺寸:長74.9米,寬8.4米,吃水5.3米。
航速:15節(水面),22節(水下)。
續航力:3300海里/4節(水下)。
人員編製:60名(其中軍官10名)。
電子系統:921-A型雷達警戒系統。
雷達:水面搜索,I波段。
聲納:艇首安裝球型中頻聲納,用於主/被動搜索與攻擊,中頻。艇側裝有低頻被動搜索聲納基陣,低頻。
武器系統:533毫米魚雷發射管6具,發射「魚」Ⅳ自導魚雷,備彈18枚。還可發射C-801/C-802反艦導彈。或32枚水雷。
動力設備:柴油機-電力推進,3台德國MTU2V493柴油機,7葉大側斜螺旋槳,單軸。
「元」級潛艇
性能參數
排水量:3,000噸(水下)。
最大潛深:300米。
電子系統:聲吶:DSUV62A被動拖曳陣,甚低頻。
ARUR、ARUD電子偵察和預警系統。
火控系統:DLA2A武器控制系統。
雷達:湯姆遜無線電公司的DRUA33搜索雷達,I波段。
武器系統:6具533毫米魚雷發射管,共可攜帶20枚魚雷。還可發射C-801/C-802反艦導彈。
動力設備:柴油機-電力推進。
性能參數
排水量:2,350噸(水上),3,076噸(水下)。
主體尺寸:長73.8米,寬9.9米。吃水16.6米(正常排水時)。
航速:17.5節(水下)。
最大潛深:300米。
武器系統:6具533毫米發射管,備彈18條。
動力設備:柴油/電力推進,5,900匹軸馬力,單軸六葉低噪聲槳。
「漢」級核動力攻擊潛艇
性能參數
排水量:4,500噸(水面),5,500噸(水下)。
主體尺寸:長108米,寬11米。
航速:12節(水面),25節(水下)。
最大潛深:300米。
電子系統:1部艇殼主被/動搜索攻擊聲納(後改為仿法國DUUX5低頻被動聲納),1部水面搜索雷達。
武器系統:6具533毫米魚雷發射管,使用「魚Ⅲ」型或「魚Ⅰ」型反潛魚雷,共可攜帶18枚魚雷。還可發射C-801反艦導彈。
動力設備:15,000匹軸馬力壓水式核反應爐一座。
中國093B巡航導彈核潛艇想像圖
性能參數
排水量:9,000噸(水下)。
主體尺寸:長米,寬米,吃水米。
航速:50節(水下)。
最大潛深:400米。
噪音量級:105-110分貝。
自持力:90天。
武器系統:16枚「扶風」超音速反艦巡航導彈,速度3馬赫,射程約200公里。配備有533毫米和650毫米魚雷發射管,備彈20條。
動力設備:高溫氣冷核反應堆。
性能參數
排水量:8,000噸(水下)。
主體尺寸:長120米,寬10米,吃水8米。
航速:22節(水下)。
最大潛深:300米。
噪音量級:160分貝。
自持力:80天。
人員編製:84名。
電子系統:1部艇殼主被/動搜索攻擊聲納,1部水面搜索雷達。
武器系統:12枚巨浪(CSS-N-3)潛射彈道導彈,兩級固體燃料,慣性制導,射程2700公里(2460海里),戰鬥部為2百萬噸級核當量,單彈頭。後改為「巨浪」Ⅱ型彈道導彈,最大射程可達8,000公里,3至6枚分彈頭,當量20萬噸級。6具533毫米魚雷發射管,可發射兩用魚雷,備彈18枚。
動力設備:核動力,渦輪-電力推進,1座壓水堆,90兆瓦,單軸。
主體尺寸:長140米,寬12.5米,吃水12米。
航速:40節(水下)。
最大潛深:400米。
噪音量級:115分貝。
自持力:80天。
武器系統:16枚「巨浪」Ⅱ型彈道導彈,最大射程可達8,000公里,3至6枚分彈頭,每枚彈頭為20萬噸級核當量,命中精度300米。6具533毫米魚雷發射管,可發射兩用魚雷或C-801/C-802反艦導彈,備彈18枚
中國093B巡航導彈核潛艇想像圖
常規潛艇動力裝置的進排氣系統 2003年5月20日 艦船知識網絡版
浮閥示意圖
編者按:5月8日出版的《艦船知識》雜志刊登了“常規潛艇動力裝置的排進氣系統”一文,詳細介紹的系統的工作原理,是一篇難得的潛艇技術科普文章。
潛艇上的柴油機有一套比較複雜的進排氣系統新的進排氣系統已有所簡化和改進。爲了說明,我們還是選了一型比較複雜的設計作介紹,也就可以更好地了解技術的進步和潛艇設計改進之處。(文中的數字參見圖1、圖2)
進氣系統分爲水上進氣系統和通氣管狀態進氣系統。 水上進氣系統的進氣圍井16,位于指揮室圍殼後部。在圍殼的兩側有進氣口,空氣從這裏進入圍井,然後沿指揮室圍殼下部左右兩舷的管道14進入機艙。柴油機在水上狀態工作時舌閥17的上部開啓,通往柴油機的閥11開啓。當柴油機停止工作時,舌閥17上部和下部的閥11都處于“關閉”狀態,不過此時舌閥17殼體下部的孔口卻處于開啓狀態。在潛艇下潛時,海水就從這些孔口進入管路,使圍井內充滿海水。這一段排氣管道和舷外海水內外壓力平衡,因此就做成非耐壓的。當潛艇上浮時,海水就會從舌閥17下部的孔口流入上層建築,排出舷外。
如果由于操作不慎或者上浪的影響而使進氣口暫時堵住,柴油機就不得不從機艙內吸氣,艙內空氣就會變稀薄,形成所說的“真空度”。若天氣狀況良好,海上風浪不大,還可允許在水上狀態航行時打開通往柴油機艙的艙門,空氣就可以通過出入艙口,經過機艙前面的幾個艙室進入柴油機艙。這樣,柴油機艙的空氣狀況就會好些。
在通氣管狀態航行時,柴油機就通過由浮閥20、固定進氣圍井21、活動的升降圍井19和進氣管道組成的通氣管進氣系統吸入空氣。在通氣管進氣管道上,有通氣管進氣管道舌閥18。這時柴油機就通過舌閥11和機艙內的進氣輕圍井吸入空氣。注意這時水上進氣管道中的舌閥17是關閉的。
在通氣管狀態航行時,浮閥20是升起高出水面的,活動升降圍井19處于升起狀態。這時空氣就通過浮閥20,進入通氣管活動進氣圍井19進入進氣管道,因此必須保持浮閥20高出水面一定高度才能吸入空氣。如果由于操作不慎或者上浪影響,浮閥被海浪淹沒,就有可能將海水吸入進氣管道內,進入圍井的海水可用防水閥22防入艙內。圖中21爲通氣管固定進氣圍井,23爲控制活動進氣圍井升降的操縱器,24爲升降裝置基座。
在通氣管狀態航行時,要求操舵人員有較高的業務水平,使潛艇保持在潛望深度做定深航行,使浮閥高出水面,不致淹沒到水下。而浮閥更是一個巧妙的設計,能使空氣通過浮閥進入進氣管道,而不讓海水進入。
從吸氣的角度考慮,使用通氣管裝置時,浮閥離水面高些好,但這對潛艇的隱蔽性不利。因爲,升起的浮閥容易被敵雷達發現。在潛望深度使用通氣管裝置時,通常爲潛望鏡頂部高出水面0.5~1.0米。具體高出水面多少則要根據潛艇的類型和當時的海況而定。
浮閥有多種不同的形狀,有帶杠杆式的,也有不帶杠杆的浮子式的。圖所示爲一種帶環狀浮子式的浮閥。
在正常情況下,如箭頭所示,空氣經孔口3進入進氣圍井,海水不會進入。如果因未能控制住航行深度而使浮閥沈入水下或被波浪淹沒,則環裝浮子5就會浮起而上升,一直升到橡皮密封環4處。同時浮子5的上部也將孔口3堵住。此時,空氣無法進入進氣圍井,海水也無法進入圍井。如果柴油機仍在工作,則只能從艙室中吸取空氣,形成艙室的“真空度”。這時在艙內的艇員會感到低氣壓帶來的難受感。不過波浪過去,浮子又會落下,恢複進氣。
在浮子5的下部有一些孔(圖上未畫出)。這些孔的尺寸大小是按一定的要求選定的。當浮子被海水淹沒時,海水就從這些孔中進入浮子內腔,浮子內的空氣就形成氣墊。到一定的程度,進入海水的重量就不會使浮子下沈,海水就又會從孔口3進入圍井。不然的話,如果深度繼續加大,海水還不能進入圍井,就有可能將浮子壓壞。一般可取潛深25米時進入浮子的海水重量(按艇上的深度計,不是浮閥潛到25米水深處)來確定這些孔的尺寸。到這時候艇員就應及時關閉通氣管的進氣舌閥18。
二戰後早期的潛艇柴油機一般有2個排氣系統:水上排氣系統和通氣管排氣系統。
在水上狀態時用水上排氣系統。廢氣經過排氣內舌閥4、水上排氣外舌閥3和排氣消聲器2。有些艇不設排氣消聲器。最後經排氣口1排出艇外。
每臺柴油機都有本機的排氣內舌閥,在耐壓艙室內,手動或液壓開啓與關閉,帶有經研磨的金屬密封面。排氣外舌閥3有橡膠圈密封的閥盤,用液壓開啓與關閉。當閥開啓時,閥盤就會落在舌閥殼體內下部的水槽裏,槽內有從冷卻系統來的海水冷卻閥盤,以防高溫廢氣燒壞橡皮密封圈。
在通氣管狀態航行時,柴油機的廢氣通過通氣管道排出。排氣噴口15位于指揮室圍殼尾端的上部。通氣管狀態航行時,此噴口在水面上的深度爲1.5~2米。爲了減少排氣産生的水花和降低排氣噪聲,有的潛艇將其設計成“鴨尾巴”形,如本文題圖R級潛艇就是這樣的。
在通氣管排氣管道上有止回操縱舌閥6、通氣管排氣外舌閥10和低壓廢氣吹除舌閥13。
通氣管外舌閥10起主要閉鎖作用。這舌閥用橡膠密封圈進行密封,用液壓開啓與關閉。在水下狀態時,柴油機不工作,從通氣管排氣口15到舌閥10之間都充滿海水,因此這一段管道是非耐壓的。而在舌閥10之後排氣管道承受海水的壓力,因此是耐壓的。在通氣管狀態啓動柴油機時,廢氣要通過閥6和閥10之間並將閥10、閥13、排氣口15之間的海水排除掉,因此,啓動時排氣背壓是很高的。
止回操縱舌閥6沒有橡膠密封圈,是不能完全密封的。這一舌閥有手動傳動裝置,可使閥處于“關閉”、“止回”和“開啓”的狀態。
在水上狀態時,舌閥6處于“關閉”狀態,廢氣經水上排氣外舌閥3排出。
在通氣管狀態時,舌閥6處于“止回”狀態。廢氣經這舌閥流向通氣管排氣管道的排氣噴口15排出。如果柴油機突然停車,而艇員又來不及關閉舌閥10時,海水就會從通氣管排氣管路倒流向柴油機。這時舌閥6就會自動關閉,擋住大量海水。這就是廢氣可以通過,而海水卻不讓倒流,稱爲“止回”。這樣艇員還來得及關閉機艙內的排氣內舌閥4。
當潛艇處于抛錨或靠岸停泊時,雖不使用柴油機,但有的潛艇卻要使用柴油壓縮機,給艇上的高壓氣瓶充氣。這是一種用柴油機機動力的空氣壓縮機。這時舌閥6就處于“開啓”狀態。從閥8來的柴油壓縮機的廢氣就可以經此,通過水上排氣外舌閥3和排氣口1排出。這時閥10是關閉的。還有的潛艇接有排氣通風機的閥式操縱器9,可將艙內空氣經此抽出艇外,進行換氣。
柴油機排出的廢氣可以用來吹除主壓載水艙的水。對于雙殼體大儲備浮力的艇,用高壓空氣先吹除中組主壓載水艙的水後,艇就從水下狀態上浮,轉入半潛狀態。這時可以啓動柴油機航行,並用廢氣吹除首、尾組主壓載水艙的水,使艇完全上浮到水上狀態。用廢氣吹除,可以節約艇上的高壓空氣,稱爲“低壓吹除”。低壓吹除舌閥13,在通氣管排氣管道上,它和止回操縱舌閥6一樣,也沒有橡膠密封圈,也是不能完全密封的。從閥的殼體上接有管路與主壓載水艙的“低壓吹除集管”25相接。閥13關閉時,廢氣就不進入排氣圍井的通道而轉入低壓吹除集管,再由此集管分往首、尾組主壓載水艙。
柴油機的排氣系統有多種不同的形式,但排氣原理是一樣的。現代潛艇的排氣系統已大爲簡化,因爲不用柴油壓縮機而用電動壓縮機,所以取消了閥8。因爲不用柴油機廢氣吹除,而取消了低壓吹除集管25。更爲簡化的是,既然通氣管排氣管道(阻力大)可以排除在通氣管狀態工作的柴油機廢氣,爲什麽不能用來排除水上狀態工作的柴油機廢氣呢?于是把水上排氣系統也取消了,把水上狀態和通氣管狀態的排氣系統合並爲一個。既然小貓可以走大洞,就不必爲大貓開一個大洞、小貓再開一個小洞,開兩個洞了。
http://mil.news.sina.com.cn/2003-05-20/127324.html
國産潛艇上的洞洞爲什麽那麽多?
國産常規潛艇處于水面狀態時,舷側衆多的孔洞顯得特別紮眼,這些學名叫“流水孔”的玩意既不美觀,又影響潛艇水下航行的性能。既然如此,國産潛艇上爲什麽還要保留那麽多“流水孔”呢?
國産潛艇上的孔洞爲什麽那麽多,是個讓很多軍迷困擾的問題。部分軍迷將原因歸咎到國內設計水平較低,建造能力落後上。這當然是比較片面的認識,因爲真正的答案遠沒有那麽簡單。潛艇艇表開口的控制,涉及到采用不同殼體結構、不同的設計思想、不同的戰術要求等諸多複雜的因素。要搞清楚真正的原因,只有從多個方面,多個角度,進行全面深入的分析後,才能得出較爲正確的結論。
最新型的039A\B型元級AIP潛艇上的流水孔依然醒目,很多軍迷難以接受也非常不理解。
一、采用雙殼體結構,是造成國産潛艇流水孔較多的主要原因。
先來認識一下流水孔,因爲國産潛艇上那一排排紮眼的開口,就屬于流水孔範疇。流水孔是指開立在潛艇上層建築等非耐壓非水密結構上,用于潛艇上浮下潛時,供液體自由進出的開口。由于潛艇航行方式較爲獨特,其艇體結構與水面艦船相差較大,所以潛艇的上層建築概念與水面艦船的完全不同。潛艇的上層建築是指位于耐壓艇體上方,沿艇體長度伸展的導流透水甲板結構。潛艇上層建築容積的大小,直接影響著流水孔開口數量的多少。文字解釋比較抽象,爲了直觀明了用圖片進行注解,請看下圖。
雙殼體艇橫剖面略圖
前蘇聯633型R級常規潛艇橫剖面圖
上兩圖中陰影部分即爲雙殼體潛艇的上層建築區域,指揮室圍殼也屬于上層建築範疇。潛艇的上層建築用來容納柴油機的進、排氣管系、高壓空氣瓶組、可伸縮的導纜鉗、帶纜樁、系泊羊角、失事救生浮標、救生平臺等等多種設備。它還起著連接首尾端結構,保證潛艇外部縱向連續性的作用。其構成的上甲板結構,也是人員在艇外操作時的甲板通道。所以,上層建築是雙殼體潛艇非常重要的,不可或缺的組成部分。
雙殼體結構潛艇的上層建築較大,上是退役後的國産033型常規潛艇,看著拆的挺慘其實只是拆除了上層建築和圍殼部分。這艘艇也不是要報廢,而是重新整修,現在該艇作爲潛艇博物館在上海東方綠洲主題公園展出。下是在塢修的一艘033艇,也拆除了上層建築,露出內部衆多的管系和高壓氣瓶等裝置。雙殼艇的上層建築空間有多大,大家應該有點概念了吧。
由于上層建築屬于非耐壓非水密結構,潛艇在水下時這部分空間處于自由浸水狀態。爲了保證潛艇在上浮下潛時,水能夠自由流暢的進出,上層建築上就必須開立一定數量的流水孔。上層建築內自由浸水面積大的潛艇,開立的流水孔數量就多。上層建築小的潛艇,流水孔開口數量就少。雙殼艇因爲主壓載水艙布置在舷間,艇體寬度增大,爲了滿足潛艇水下航行性能的需要,保證潛艇線型的流暢,現代雙殼體潛艇(國産潛艇采用雙殼體結構)的上層建築和外殼體往往形成光順曲線,成爲一體。上層建築的體積就較大,內部的自由浸水面積也大。爲了保證潛浮時上層建築內的剩水能夠及時的流出,上層建築上的流水孔開口數量也就較多。
上邊塗成陰影的爲單殼體潛艇的上層建築區域,與雙殼艇相比上層建築空間要小的多。而像下邊這艘單殼體結構的美國弗吉尼亞級攻擊核潛艇,除了一個圍殼外就沒有其他上層建築部分,其流水孔就更少,只有在艇首等部位有不起眼的開口。
單殼體艇因爲主壓載水艙只布置在首尾端,沒有舷間結構,所以單殼艇的上層建築外型線不需要像雙殼艇那樣,爲了顧及水下航行需要,和艇體形成整體流線型,上層建築空間也就比雙殼艇要小的多。流水孔開口數量也就很少,個別極端的如美國人那樣,只有一個圍殼爲上層建築空間的潛艇,流水孔的開口數量就更稀少,只有在圍殼和艇艏部有少量的難以觀察到的流水孔。讓很多人覺得西方潛艇艇表開口很少,外形也顯得異常光滑。實際上這是東西方兩個潛艇設計流派,采用不同的殼體結構形式所造成的差異。我國潛艇的設計體系傳承自前蘇聯,在設計思想和建造工藝上基本一脈流傳,殼體結構上也和前蘇聯一樣,選用了雙殼體結構,上層建築上的流水孔就比較多。
雙殼體艇燃油壓載水艙(可作超載燃油艙)的通氣閥、通海閥示意圖。下潛時位于底部的壓載水艙通海閥打開,水從通海閥進入水艙內,水艙內的空氣通過上部打開的通氣閥進入上層建築內,再由上層建築上的流水孔外溢到艇體外,如果流水孔數量過少,或者開口面積不夠,進入上層建築的空氣將難以及時外泄到艇體外,壓載水艙會形成一定的空氣墊,影響水艙進水速度,延緩潛艇下潛時間。
對于雙殼體潛艇來說,流水孔開口較多是有不得已的緣由的。如果流水孔開口面積過小,雙殼艇在下潛過程中,壓載水艙通過通氣閥排出的空氣將難以迅速的由流水孔溢出艇外,這會影響潛艇的快潛品質。早期的潛艇因爲水面航行爲主,爲了避免航空反潛的威脅,就非常重視潛艇的快潛指標。在上層建築上不但有衆多的流水孔,甲板上也開立密密麻麻的通氣孔,以加速潛艇的下潛速度。現代潛艇雖然以水下航行爲主,通氣孔已經大爲減少,有的徹底取消,但是爲了保證潛艇臨戰時的下潛速度,合理的流水孔開口數量是必須的。
039型(宋)級常規潛艇,緊急上浮時上層建築內的水從流水孔噴湧而出的情景。
雙殼體艇的上層建築空間大,所處位置又高于潛艇的重心和穩心,當潛艇上浮時,如果流水孔開口面積不合理,會造成嚴重的背水(上層建築內的水在潛艇上浮時候沒有及時流出艇體,而滯留在上層建築內)。雙殼艇的上層建築背水容積,可以達到艇體總噸位的5%-10%左右,這對雙殼艇上浮時本就脆弱的橫穩性會造成巨大的影響,對潛艇上浮經過穩性瓶頸區時的安全不利。如果海面海情大,潛艇橫穩出現問題,容易出現過大的橫傾,甚至發生整艇傾覆,對艇內人員和潛艇都會造成嚴重的威脅。
這艘F級雙殼體潛艇在緊急上浮後,上層建築內的水通過圍殼與艇體上的流水孔及時外泄到艇體外,如果流水孔開口面積不合理,大量背水無法流出艇體,滯留在上層建築內,雙殼體潛艇上浮過程中脆弱的橫穩將難以保持,一旦潛艇失穩造成傾覆會嚴重威脅潛艇的安全。
另外還要考慮到當潛艇水下失事或出現嚴重故障時,潛艇會用緊急上浮法,以最快速度上浮至水面。此時潛艇的上浮速度和出水的角度都會非常大,流水孔開口面積不夠就會造成更嚴重的背水,幾百噸乃至上千噸(戰略核潛艇的上層建築容積可以占總噸位的15%,以92艇爲例如果水下滿排達到9000噸,上層建築背水容積將達1350噸)的剩水將徹底破壞事故潛艇的橫穩性。失事後的潛艇自救能力本就十分脆弱,一旦上浮後潛艇出現傾覆,事故潛艇殘余的生存力將徹底喪失,毀艇傷人的嚴重事故將無法避免。
俄羅斯和我國潛艇結構都以雙殼體艇爲主,VIII攻擊核潛艇的流水孔在水下時有擋板可以密閉,但是處于水面狀態的時,其舷側的大開口流水孔還是非常紮眼。
所以,流水孔雖小對雙殼體潛艇卻是至關重要的。爲了保證雙殼體艇潛浮時的安全性,以及臨戰時必要的潛浮速度,艇表開立一定數量的流水孔也是必須的。總而言之,擁有大容積上層建築的雙殼體潛艇,流水孔開口數量較多是殼體結構特性所決定的,是原生性的問題,從根本上說它也是個無法避免的問題。
二、潛艇建造工業起步晚、自主設計能力薄弱、設計思想滯後是國産潛艇艇表開口較多的重要因素之一。
外側的035型艇(內側爲039首艇320號)雖然是80年代初設計完成並開始建造的,但是設計框架還是自前蘇聯50年代設計的033型艇上改進而來,流水孔開口形式還是采用了立式開口流水孔。
我國是在引進前蘇聯613型(W級)和633型(R級)常規潛艇,並國産化後才建立起潛艇建造體系的。與發達國家造了一百多年的潛艇工業體系相比,起步晚自主設計能力較爲薄弱。60年代的國民經濟困難,和長達十年的社會動亂,更打斷了國內潛艇建造工業的正常發展,導致設計思想的嚴重滯後。以第一代自主設計的035型常規潛艇爲例,雖然是80年代才設計完成的,卻是自033型艇的基礎上改進而來。而033型是前蘇聯50年代初設計的産物,體現的還是二戰前後的一些設計思想,比如以水面航行爲主,重視水面航行性能,重視快潛指標等。所以033艇的上層建築和甲板上開立了衆多的流水孔與通氣孔。035型艇以033型爲母型,自然也沒能跳出033型的框架。流水孔樣式雖然有所改動,通氣孔數量也有一定的減少,但是開口形式還是和33艇一樣,采用了舷側與上甲板橫排的衆多立式開口,開口數量也依然較多,與母型33艇的區別並不是很大,蘇俄舊式潛艇的烙印依然明顯。
039型常規潛艇雖然是2000年後開始批量建造的,但是其設計時間早在上世紀80年代中期就開始,首艇在94年下水後暴露的問題較多,一直到2000年前後才完成技術定型。可見國內較爲薄弱的自主設計能力對國産潛艇型號發展的影響。
這種現實差距自然也會影響到後續的039系列潛艇的設計研發,在艇表開口的細節處理上,我國與發達國家的差距就非常大。這一點對比國産的039系列常規潛艇,與德法的212A、214、鈾魚等先進型號就非常明顯。美德等發達國家在降低艇表粗糙度,圍殼上大開口空腔的密閉處理,艇體流水孔開口上的嚴格控制,乃至一些折倒式翻轉機構上的蓋板配置,都有著嚴格的要求,施工工藝也非常優秀。國內這方面尚處于初級階段,不管是設計理念還是工藝水平,與這些國家的差距都非常顯著。當然存在這種差距是正常的,我國自035型開始自主設計潛艇,到現在不過三代三型而已,而德、法、美、俄、英等發達國家建造潛艇的曆史都已達百年,百年間積累起來的設計經驗不是新中國短短的幾十年所能趕超的。這些發達國家經過長期努力完善起來的建造體系和先進的工藝水平,也不可是我們一口氣就能趕上的。可喜的是通過039與039A/B型潛艇的建造,國産常規潛艇無論是總體性能還是在艇表開口的處理,差距都在顯著的縮小。相信經過一到二個五年計劃的追趕,國産潛艇在艇表開口上的處理,達到國際先進水平是完全可能的。
三、在不同的戰術任務航速與建造成本要求下,國産核潛艇與常規潛艇在流水孔開口形式上的差異。
核潛艇水下續航力長,戰術航速高,快速性要求較爲嚴厲,所以國內核潛艇自設計初就決定使用阻力系數低的縱縫流水孔。
考慮到柴電動力潛艇水下戰術航速低,續航力短對快速性要求較爲寬裕,大批量建造也需降低建造成本提高經濟性。039基型(宋)級常規潛艇就采用了工藝簡單、建造成本低、但阻力系數較高,外觀較爲紮眼的帶擋板縱縫流水孔。
039(宋、元)常規潛艇使用帶擋板縱縫流水孔,而沒有采用我國核潛艇上使用的阻力系數更低的縱縫流水孔,也有著具體戰術任務要求與經濟性層面的考慮。傳統的縱縫流水孔(如我國091、093攻擊核潛艇上使用的縱縫流水孔)要在艇首至艇尾的外殼體薄板上,進行連續幾十米的開口,開口處的強度保障就比較麻煩。同時,大長度縱縫流水孔在核潛艇水下高速航行時,容易出現流體激勵薄殼體板和空腔部位,形成低頻噪音的現象,造成嚴重的流體噪音。爲了避免出現這類情況,在縱縫流水孔內需要有衆多的內擋板或者支骨加強開口處的強度,抑制薄殼體板在高速水流沖擊下壓力脈動導致的殼體板諧振現象。
上圖爲091型攻擊核潛艇405號,縱縫流水孔中的內擋板和支骨清晰可見,下圖爲403號艇。
這就造成大長度的縱縫流水孔建造工序多,工藝要求高,建造成本高,經濟性差的特點。但考慮到核動力潛艇戰術任務航速高,對快速性要求較爲嚴厲,使用阻力系數低的傳統縱縫流水孔是必須的,所以國産核潛艇選擇了傳統縱縫流水孔。而且對于裝備數量較少,作戰性能要求較高的核潛艇,也不能用經濟性和成本角度去考慮這類問題。
實際上039上采用的帶擋板流水孔也是縱縫流水孔的一種,只是因爲縱縫中起到加強流水孔開口處薄殼體板強度作用的擋板的存在,讓這類流水孔看著和035型上采用的立式開口流水孔比較相似。但帶擋板縱縫流水孔的阻力系數要比老式潛艇上散亂的立式開口流水孔要好。
常規潛艇則不同,由于柴電動力系統的限制,常規艇水下持續航行時間短航速慢,戰術航速要求低,快速性要求也較爲寬裕。使用工藝複雜且成本高的縱縫流水孔效費比不好。更何況使用縱縫流水孔降低的摩擦阻力,也不足以讓039的航速得到顯著提升。從簡化工藝、降低成本的實用角度出發,039選擇工藝簡單的帶擋板縱縫流水孔是合理的。
039(宋)上使用的擋板縱縫流水孔,雖然有阻力系數高的問題(由于擋板的存在打斷了流體的均勻性,加劇了流水孔內外流體的交換強度,增加了艇體邊界層的厚度,提高了潛艇的粘壓阻力,對潛艇的快速性不利。)但對于水下戰術航速要求不高的常規潛艇影響並不大。而擋板流水孔通過在縱縫開口中,增加豎立擋板的方式,用簡單的工藝較低的建造成本,就解決了雙殼艇薄殼體板上連續開口的工藝問題,成本低經濟性好,對于大量建造的常規潛艇是適用的。畢竟039型設計時期還是上世紀的80年代中期,當時國內的經濟環境比較困難,國防費用相當拮據,裝備研發過程中成本控制也是設計中需要兼顧的。
039AB元級第三艘在艏艉部開始采用新型的擋板縱縫流水孔,縱縫中檔板前側角度更大檔距更小,可以有效抑制流水孔內外流體的交換強度,改善擋板流水孔造成的艇體邊界層加厚,粘壓阻力系數增加,艇體總阻力增高的問題,對元級艇的水下快速性有利。
039A/B型元級雖然采用了AIP動力,但是其水下最高航速的可持續性與柴電動力潛艇變化不大。AIP混合動力的水下長航時間是慢速指標,一般不會超過4-6節。元級繼續采用擋板縱縫流水孔還是可以理解的。實際上元級上的流水孔與宋級相比,也有了明顯的改進。在元級第三艘上,可以發現艏艉部分流水孔的擋板檔距很小,擋板向前外側的角度很大。這種新設計的擋板形式,能抑制較高航速下流水孔內外流體的交換強度,改善流水孔區域流場的均勻性,減小擋板流水孔的阻力系數,降低艇體的粘壓阻力,提高元級的水下快速性。
綜合來看,國産常規潛艇堅持使用看著紮眼的擋板縱縫流水孔,是從經濟性角度出發,在夠用原則下兼顧常規潛艇水下戰術航速特點而做出的決定。
四、未來國産潛艇流水孔開口形式的改革方向。
移出廠房的美國弗吉尼亞級攻擊核潛艇艇表開口少,艇體光順度非常優秀。對于單殼體潛艇來說,控制艇表開口有著較爲明顯的優勢。
隨著潛艇設計水平的提高,艇體線型已日趨完善,國際上提高潛艇水下快速性和降低流體噪音的措施已從優化艇體線型,向提高艇表光順度方向發展。最大程度的減少艇表開口,改善艇體光順度,是目前發達國家設計現代潛艇的宗旨。在這種大趨勢下,國産潛艇也必須與時俱進,對艇表開口較多,光順度較差這一弊端進行有力的改革。
船臺上露出上層建築的214型潛艇,可見其上層建築空間較小。214這類小儲備浮力的混合殼體結構潛艇,上層建築等自由浸水空間小,可以有效控制艇表開口。
其中,改變殼體結構形式將是最根本、最徹底的改革措施。我國潛艇殼體結構一直遵循著前蘇聯流派倡導的雙殼體大儲備浮力設計思想,主壓載水艙容積大,上層建築內自由浸水面積也大,要在不影響潛艇潛浮性能的基礎上控制艇表開口將非常困難。只有放棄不實用的大儲備浮力、雙殼體結構,改而使用小儲浮的單殼體結構,或者以單殼體爲主的混合殼體結構,方能從根本上改變國産潛艇艇表開口較多的問題。
2000年後隨著國內關于流水孔開口形式學術研究的增加,國産潛艇上的流水孔開口形式也在進行改進,403艇就改裝了柵式大開口與細小縱縫相結合的流水孔。
當然要改變國內一直沿用了幾十年的殼體結構形式,無論是從設計思想、設計標准、配套體系都需要一個過程,短時間內完成的可能性不大。國內雖然在做一些前沿性的准備工作,但是要完成這個轉變尚需時日,依靠現有條件進行其他方法的改進就尤爲重要。鑒于目前計算機技術的快速發展,利用現代高速大容量計算機的計算能力,就流水孔繞流形式與流場問題進行研究已經成爲可能,這將爲將來來選擇阻力更小噪音更少的優良孔型,並裝艇實用提供有利的條件。國內在2000年前就流水孔開口形式的研究較少,隨著2000年後這類專業學術研究增多,就有力的支持了一些新的孔型,如403、405艇上的柵式開口,元級上使用的新型擋板流水孔的裝備使用。可見加大對流水孔開口形式的專題研究,是能對國産潛艇流水孔開口形式的改進做出較大的貢獻的。我國應該加大這方面的科研投入,迅速提高國內相關研究機構關于流水孔孔型的研究水平,爲國産潛艇流水孔開口形式的改革做好充分的支持。
俄羅斯的核潛艇上往往采用具有密閉擋板的大開口流水孔。該圖爲971阿庫拉級攻擊核潛艇,流水孔在紅色箭頭處爲關閉狀態,藍色箭頭處爲開啓狀態。
鑒于俄羅斯有處理雙殼體艇艇表開口的豐富經驗,我國可以通過相關渠道,多借鑒和學習俄羅斯在雙殼體潛艇上,處理大量流水孔開口的經驗。例如,俄羅斯潛艇在60年代初就使用了阻力系數低,工藝簡單的柵式大開口流水孔(柵式流水孔的阻力系數比我國039型裝備的帶擋縱縫流水孔的阻力系數要低四倍)而我國近些年才開始在403艇上試裝實驗,可見俄羅斯在流水孔開口形式上的研究是起步較早的。前蘇聯在60年代就開始爲核潛艇上的大開口流水孔設置密閉蓋板,以改善核潛艇水下航行時艇表開口帶來的一系列問題,收到了良好的效果。這方面的經驗尤其值得我國借鑒,在密閉機構傳動設備的布置,密閉口蓋的閉合形式上如果能從俄羅斯獲得較多的技術支持,對提高我國潛艇流水孔開口形式的改進都會十分有利。
俄羅斯部分877基洛級常規潛艇在首部的流水孔有密閉擋板,艇中後部則采用柵式流水孔。紅色箭頭處爲開啓的流水孔狀態,藍色爲密閉擋板關閉後的流水孔狀態,後部爲柵式流水孔。
一旦我國獲得俄羅斯那樣成熟的流水孔處理技術,我國在國産攻擊核潛艇上,可以像俄羅斯那樣使用具備密閉裝置的大開口流水孔,在常規潛艇上則可以嘗試使用柵式流水孔。或者像部分877基洛級潛艇,在艇體前部流速快的正壓梯度區內使用帶開閉裝置的流水孔,在艇體後部流速低的負壓梯度區內使用工藝簡單造價低的柵式開口,既兼顧了潛艇的水下航行需求,又考慮了一定的建造成本保證了經濟性。諸如此類措施,都將對國産潛艇艇表開口較多的弊端形成有力的改革,爲國産潛艇水下快速性的提高與流體噪音的降低,作出有力的支持。
西方潛艇優良的艇表工藝處理是我國潛艇工業將來學習與趕超的方向。
五、結語
隨著我國經濟的騰飛,國防裝備費用投入力度的日益加強,在潛艇流水孔的處理上,必須扭轉以往夠用就行,經濟性爲重心的設計思路,轉變到性能第一,精益求精的方向上去。最大限度的利用現有條件,以自主研發爲主,引進先進技術爲輔,多途徑多方法,來有效改善國産潛艇的光順度,爲國産潛艇作戰性能的進一步提升做出有力的貢獻。小小的流水孔看著簡單,背後蘊藏的專業知識卻非常寬泛。國産潛艇上洞洞多的原因,是多方面因素作用下的結果。新世紀來臨後,國際潛艇技術發展迅速,一直苦苦追趕的國産潛艇沒有任何退路,也沒有任何時間可以懈怠。只有繼續秉持小步快跑,多型號多改進的發展原則,加大裝備費用的投入力度,不斷的提高設計能力,提高建造水平,方能實現國産潛艇趕超國際先進水平這一偉大使命。
參考:
1、船舶力學《帶流水孔潛體流場數值模擬》中國船舶科學研究中心,張楠、沈泓萃、姚惠之、高秋新、顧民。
2、船舶工程《潛艇出水穩性研究》武漢第二船舶研究所,鄭熹。
3、船舶力學《潛艇流水孔阻力數值計算與回歸分析研究》中國船舶科學研究中心,張楠、沈泓萃、姚惠之。
4、《潛艇上層建築大容積條件下的潛浮性能》,尤子平。
5、中國造船《潛艇應急上浮穩性研究》,鄧志純、陳材侃。
6、《三維孔穴流動性的數值計算研究》中國船舶科學研究中心,張楠、沈泓萃、姚惠之、高秋薪。
7、《船舶名詞術語》第十二冊,潛艇、核動力、艦船防化分冊,國防工業出版社。
8、《潛艇基礎知識》衆勰,國防工業出版社。
http://www.zgjunshi.com/Article/Class38/Class49/Class134/200909/20090926105822.html
從“庫爾斯克”看潛艇結構與抗撞擊能力
北京時間2001-2月10日淩晨7時45分,美國海軍“格林維爾”號核潛艇(洛杉磯級)在夏威夷水域與一艘500余噸的日本漁船相撞,漁船被撞沈,但“格林維爾”卻無任何損傷。聯系到前段時間的“庫爾斯克”號潛艇的沈沒,不得不歎服美國潛艇的堅固。
雖現已查明“庫爾斯克”號的沈沒是因魚雷故障而引發的爆炸所致,但俄羅斯並未排除“外部原因”導致爆炸的可能性。言下之意,還是暗指有可能是美俄潛艇相撞而引起的魚雷爆炸。不過,俄方所指責的“洛杉磯”級核潛艇噸位僅有“庫爾斯克”號的1/3,而且相撞後美國潛艇竟然還能逃離事故現場,這就難以讓人信服了。
其實,這種可能性的確存在。在過去三十多年中,美蘇雙方爲了獲取對方潛艇的數據,經常在大洋深處相互追蹤,有時雙方的距離竟然只有百余米。這種危險的“貓捉耗子”遊戲造成了十多起核潛艇碰撞事故,但總是前蘇聯的潛艇損傷較爲嚴重。
1970年6月,美國一艘鱘魚級核潛艇在太平洋上與前蘇聯K108號核潛艇相撞,結果美國核潛艇只是潛望鏡和天線等部位受到輕微損傷,而K108則被撞出一個大洞,連推進器也嚴重受損,被迫浮出水面。
1986年10月2日,前蘇聯K219號潛艇上一導彈的發動機起火引發爆炸,72小時後沈入5500米深的海底,4名艇員喪生。根據後來解密的文件推測,這次事故極可能是因美蘇潛艇相撞而使導彈燃料泄漏引發的。從這起事故中我們不由看到了“庫爾斯克”號的影子。爲什麽“受傷的總是我呢”?排除前蘇聯武器設計極端追求性能的領先,而造成系統的不穩定因素外,雙方的潛艇設計思想上的差異是主要原因。
爲了承受水底巨大的壓力,潛艇都有耐壓艇體,殼板厚度在20毫米以上,用高強度材料制成,能夠下潛三四百米深。但如果所有的設備全布置在耐壓殼內,潛艇內部空間將變得非常狹小,裸露于艇體外的凸出物也將增多,不利于潛艇的快速航行,所以一些潛艇還有非耐壓艇體。這一層由于不承受水壓,因此只有幾毫米厚,易于加工。由于耐壓艇體與非耐壓艇體的原因,潛艇可分爲單殼體結構、雙殼體結構、單雙混合殼體結構和半殼體結構。
出于對潛艇戰時生存力的考慮,前蘇聯潛艇大多采用了雙殼體結構,外殼距耐壓殼有相當的距離,就像裝甲車輛上的“間隙裝甲”,抗攻擊能力極強。“庫爾斯克”號所屬的奧斯卡級核潛艇更是登峰造極,兩層殼體相距竟達3米,西方普遍裝備的小型反潛魚雷對其奈何不得。
而美國出于效費比方面的考慮,洛杉磯級潛艇采取了單雙混合殼體,除前部爲雙殼體外,其余部分均爲耐壓殼。與“奧斯卡”級相比較,它花更少的錢,辦了更多的事。不過,由于只有一層殼體,一旦受損,後果可想而知了。
看到這時,大家不禁要問:這樣看來,雙方相撞的話,美國潛艇撞沈的可能性不是更大嗎?這裏大家可要注意了,“奧斯卡”級強調的是抵抗爆炸的能力,而不是抗撞擊的能力。它的外殼只有幾毫米厚,在與大型物體相撞時,就好像雞蛋殼一樣。想象一下“洛杉磯”級與“奧斯卡”級相撞的情景:“洛杉磯”級就好像撞在枕頭上一樣,“奧斯卡”級的非耐壓殼會吸收掉大部分的相撞能量,剩下的對于“洛杉磯”堅固的耐壓殼來說只能算是小菜一碟了。而“奧斯卡”級兩層殼體之間布置著魚雷和導彈的發射裝置,如果其中正好有魚雷和導彈,而魚雷和導彈的性能不穩定時,後果對于“奧斯卡”級來說,將是可怕的。現在,大家明白“爲什麽受傷的總是我”了吧。
不過,萬事無絕對。在和平時期潛艇遇到的自然大多是碰撞。但在戰時,與潛艇共舞的可是魚雷和深水炸彈。如果俄羅斯能解決武器系統的不穩定性,那麽笑傲四海的就會是“臺風”和“奧斯卡”了。
從這張剖視圖可以看到,洛杉磯級核潛艇的艇艏部位爲雙層結構。其外部的非耐壓殼強度並不大,而裏面布置著戰斧巡航導彈和昂貴的聲納系統。如果這次的事故是艇艏與漁船相撞,相信“格林維爾”號的損失會相當嚴重。
http://202.84.17.73/mil/htm/20010220/373205.htm
潛艇單雙殼各有什麽優劣
雙層殼體艇儲備浮力大,單殼體艇儲備浮力小!有利有弊吧,儲備浮力大,潛艇耐壓艇體內艙室進水抗沈性好些,單殼體艇則要差些,一般單殼體艇儲備浮力只有7%-9%左右,雙殼體艇則可以達到20%左右。弊端在于雙殼體艇在下潛反映速度上要比單殼體艇差,相同耐壓殼體內空間的雙殼體艇要比單殼體艇的噸位以及濕表面積都要大,也導致水下航行速度和可探測面積要比單殼體艇慢些和大些!但是雙殼體艇因爲舷間空間大,上層建築空間寬裕,可以將很多潛艇輔助設施比如各種壓縮空氣瓶,額外攜帶的武器裝備,各種管道等布置在上層建築或者舷間空間內,而單殼體艇布置起來就比較困難顯然要占用部分耐壓殼體內的空間!另外單殼體艇因爲耐壓殼體直接暴露于外,在潛艇水下航行中一旦殼體受到碰撞,潛艇容易遭受比較嚴重的損失,雙殼體艇因爲還有一層輕外殼保護,耐壓殼體相對受到碰撞受損的情況要好些,在受到魚雷打擊時候顯然擁有舷間空間內液水艙部分保護的雙殼體艇要比單殼體艇抗打擊能力強的多!國外在研究324毫米輕型魚雷的戰鬥部分裝藥種類方面投入也是相當大的,原因也是前蘇聯使用的大部分雙殼體艇抗打擊能力比較好導致的!
小的方面來說,雙殼體艇還有些優勢,比如布置舷側聲納的時候既可以在外殼上布置也可以在外殼內部布置,甚至在內殼耐壓殼體上布置!布置空間相對寬裕自由度較大設備如果布置在外殼內部也不容易受到流體嘈聲幹擾或者刮擦碰撞損壞!而單殼體艇則只能布置在艇體表面!在敷設消聲瓦等消聲設備的時候,雙殼體艇同樣可以在外殼的外壁,內壁以及部分內殼外壁和內壁上敷設消聲設施,顯然敷設面積更大,敷設的消聲瓦種類可以更多更細效果會好些!另外單殼體艇環型抗壓肋骨都是在耐壓艇體內,這會影響部分艇內管線敷設的工作,帶來些難度,而雙殼體艇的肋骨在內殼外,管線的布置沒有這方面的困難,但是雙殼體艇部分舷間空間因爲結構的關系,空間狹小,焊接是非常困難的,這對提高艇體焊接質量減小施工難度顯然又是很不利的!總的來說有利有弊吧!
所以A級,S級比美國的潛艇潛得深就是這個原因,不過便需要自動化焊接來生產了
喔,分享一些A級,颱風級和O級的防衛手段,A級以鈦合金殼體,颱風在內外殼體間裝了海水,減低爆炸的震盪和衝擊.至於O級,比較特別,是用巡航導彈的發射管來保護潛艇.當我看到這樣的防衛手段,的確令驚奇
705(A)和945(S)潛深大,是因爲耐壓殼體和部分耐壓組件使用了以鈦合金爲主的材料,705,945潛深大並不是因爲雙殼體艇的原因,這是個錯誤的概念!影響一艘潛艇潛深大小的最大因素還是耐壓殼體強度和部分組件(比如通海閥口,舷間非耐壓空間的肋板,支撐板等焊接部位強度,疏水系統的排水口,潛艇的排水孔等等)的抗壓強度決定的,這些部位的抗壓強度決定了一艘潛艇的工作深度,極限深度和非常規狀態下的計算深度!
自動化焊接有很多好處,也並不是單純爲了對付部分焊接特別困難的特種合金鋼而搞的,並不是只有使用了鈦合金的661,705,945和685等級別艇是使用自動焊接的,自動焊接是總體趨勢,可以提高焊接質量,提高潛艇的總體制造質量,縮短建造時間,好處總體上的!
705等使用了鈦合金耐壓殼體的潛艇,抗打擊能力應該是要比只使用了普通高耐屈服度鋼材的潛艇要好些,潛深大的潛艇在戰術機動上有優勢,嘈音可以有效降低,對付沒有拖曳線列陣和拖曳變深聲納的反潛方有明顯的優勢,潛深大了也可以導致部分潛深不大的潛艇和魚雷不能有效跟蹤和攻擊!這也是前蘇聯不惜工本使用鈦合金的原因,當然前蘇聯是曾經出口鈦合金最多的國家,他們有這個資本!另外鈦合金本身抗打擊能力也比HY80一類的高耐屈服度鋼材要強!
並不是只有941臺風在舷間空間裝了水,只要是雙殼體艇,甚至個半殼體艇,舷間都是主壓載水艙也是部分超載燃油艙,這個是雙殼體艇的設計結構,並不是爲了單純的提高抗打擊能力所設置的,這個是嚴重的錯誤概念,雙殼體艇只是因爲結構設計上的特點相對提高了魚雷抗打擊能力!
949和949A把P-7的發射筒布置到舷間空間也並不是單純爲了提高抗打擊能力所設計的,P-7本身體積較大,你不可能把它都塞到耐壓艇體內這是不現實的,所以布置到了兩舷側的舷間空間內,相對的因爲發射筒也是耐壓並有抗打擊能力所以潛艇總體的抗打擊能力有了更好的改善!但是這麽設計的主要目的還是要搞清楚的,主要目的還是因爲潛艇艇內有限空間所限制的!當然毛子可以這麽幹,西方的魚雷也一直在改進,從MK50到海鱔,鋪魚,MU90等等都是以能夠擊沈最大潛深達到1000米左右,雙層殼體的潛艇爲目標設計的,戰鬥部裝藥也使用了PBXN等高爆威力的裝藥,戰鬥部形式采用了聚能穿甲戰鬥部等形式,爲了提高穿透能力部分魚雷使用了側瞄基陣以保障垂直命中潛艇艇殼,提高戰鬥部穿透能力等!
要說清楚好象比較困難,因爲這兩種結構的利弊從來不是很分明的,即使在特定一方面比較,也存在在這種情況下這種結構好,但是那種情況下情況可能就相反了的情況。舉幾方面講。
從阻力來考慮,在水下濕表面積相同的情況下,雙殼艇外形更光順,阻力更小。但是一般情況下雙殼艇儲備浮力比單的大,所以水下全排水量要比單殼艇大。在相同的動力條件下,水下全排水量增加20%,則水下最大航速降低4%左右。所以在水下濕表面積相同且動力功率也相同的情況下,單殼艇最大行速比雙殼高,低速狀態下繼續航力比雙殼艇要長。
在噪聲控制來看,一般認爲雙殼艇比單殼艇占優。但是,這種優勢實際上是在低航速的條件下獲得的。在以小于6節的地安靜速度航行時,潛艇的噪聲主要是機械噪聲,雙殼艇的輕外殼對機械噪聲有遮蔽作用,其舷間艙等多個層面都可以采取降噪措施,所以雙殼艇站優。
而若在高航速條件下,雙殼亭的輕外殼不僅容易被動力裝置引起的震動和水流激勵而産生高噪音,甚至可能在輕外殼固有頻率與激勵頻率耦合時産生共振現象。所以在高速條件下,單殼艇在噪聲控制方面更有利。
在同樣的技術工藝條件下,單殼艇不如雙殼艇光順,對水動噪聲的控制比較不利;消聲挖的敷設也不如雙殼艇方便。但是這兩點,可以通過提高技術工藝來改善。如果表面光順度相當,單殼的水動力噪聲反而比雙殼小,因爲殼體聲輻射與殼體單位面積質量是成反比的!理論計算和實驗表明,若聲輻射頻率在300HZ以上,單殼艇比雙殼聲輻射平均低15分貝以上;而在300HZ一下時,單又要比雙高10分貝左右。所以噪聲控制方面也很難說得清楚,不是只要一采用某種方案就能取得優勢的,還要綜合其他各系統性冷來看。
在目標強度方面,在排水量相同、外形相似的條件下,單殼艇的目標強度要高于雙殼艇。而在外形相似,主尺度也相同的情況下,因爲單殼的水下全排水量比雙的小10%以上,所以單的目標強度低于雙。
在抗沈性方面,雙比單占優。
總體布置,因爲單一般采用大分艙,所以在艙內設備布置和維修性,居住性等方面都比較有利。但是又因爲高壓氣瓶、燃有、管路等都在奶牙體內,同時又是內肋骨結構,所以又給充分利用空間帶來一定影響。還有上層建築狹小等因素,都使單殼艇在總體設計上要求更嚴,也可以說對其設計師的要求更高。
還有。電磁兼容性等等方面.....總的來說就是有利有弊,具體采用哪種結構,與整體設計能力和使用者的戰術理念密不可分。
“阿穆爾”級就是單殼體,不過設計這一型艇時,俄羅斯人主要考慮的是減小排水量,降低成本。
677應該說還是單雙混合體,第五艙還是雙殼,內外雙殼之間布置空氣瓶和拖曳聲納收放裝置等。實際上毛子的設計局很早就想嘗試單殼艇,60年帶曾想做一條單殼實驗艇,被海軍否決,705型在研制初期也想采用單殼加薄外殼小儲備浮力方案,也被海軍否決。
有一種看法是,雙、單之爭本質上就是抗沈性和快速性之爭!感覺是,要做出一條好的單殼艇,對設計和工藝各方面的要求更高些。
同意,正如我們以前在討論時候說得,毛子堅持雙殼體結構也有它本身得海軍作戰環境影響。毛子整個海岸線基本都處于高緯度地區,地處嚴寒,潛艇部隊戰術又要求經常到北冰洋下活動,顯然單殼體艇遠遠沒有雙殼體艇在充滿浮冰碎淩得北冰洋區域執行任務合適!
嗯,除作戰環境外,對潛艇抗沈性的看法在這兩種艇的取舍上也占很重要的地位。毛子一直認爲小分艙大儲備浮力擁有較高抗沈性的艇,在出現重大的損壞後靠艇員的努力是能夠保證艇和人員的生存的。而美國人認爲在戰爭狀態下,一艘被嚴重損壞的艇即使能被搶救回水面,但卻已經喪失作戰能力,很容易被敵方再次攻擊而徹底完蛋,所以不如更多考慮快速性和其他作戰能力。在艇受損後只要盡量使更多的艇員成功脫險就可以了。
不過有意思的是,這兩個流派現在似乎都對自己傳統觀念有了修整,都希望嘗試一下對方那種做法。毛子很早就有這個意思;美國人原先也考慮SSN-21采用雙殼,因爲發現排水量過高而放棄,現在他們又有在下代艇上采用雙殼的想法。國內也有下代常規艇上采用單殼的看法。
http://cyy2006.blogcn.com/diary,6792206.shtml
請教一下大蝦們,下一代國産潛艇用單殼還是雙殼?
前蘇聯一派以大儲備浮力小分艙結構的雙殼體結構爲主,西方在戰後以小儲備浮力,大分艙的單殼體結構爲主。
兩種結構各有利弊,簡單來說前蘇聯的雙殼體儲備浮力大,抗沈性好,抗打擊能力強,生命力高。但是雙殼體同等耐壓殼體容積下的噸位要比單殼體大出約30%的噸位,這就造成雙殼體艇水下噸位大,濕表面積大,聲發射強度大,快速性差一些,暴露率高一些。
單殼體的儲備浮力小,抗沈性差,抗打擊能力差,單同等耐壓殼容積的水下噸位要比雙殼體小的多,所以濕表面積小,快速性好,暴露率低。
我認爲,雙殼體已經不符合中國潛艇作戰需求,因爲目前的反潛技術和反潛打擊武器發展極快,發現即被有效跟蹤和精確打擊的概率高,被發現就意味著被攻擊,而現代魚雷都采用PBXN一類的高爆炸藥,比能是TNT的2倍以上,一般采用側瞄基陣來報整垂直命中,用成型藥罩來保證穿透,打穿具備舷間結構的雙殼體艇已經不是問題,造成有效的摧毀已經是現實。雙殼艇依靠大儲備浮力,和小分艙結構已經難以保證在被命中的情況下繼續生存力。雙殼艇的大濕表面積和較高的聲發射強度導致的暴露屢高的弊端已經成爲現代反潛技術條件下最致命的缺陷。
單殼體結構雖然生存力差,但是在現代反潛技術條件下已經不能用老式的追求生命力的思想去思考現代條件下的反潛作戰。只有保證最小的濕表面積,降低聲反射強度,降低暴露率才是降低被探測,被有效跟蹤的有效手段,才是降低敵探測距離,降低魚雷主動自導頭有效跟蹤距離,提高規避魚雷打擊成功率,規避敵方有效跟蹤的合理手段。因此,傳統的雙殼體結構潛艇已經越來越反映出不適合現代反潛技術水平條件下的作戰環境。
而且我國海域黃海、東海都處于大陸架範圍內,平均水深在60米左右,部分地區不足20米,超過120到200米的範圍較少,這種情況下大噸位的核潛艇作戰比較困難,面臨日美發達的航空,水面艦船和天基探測體系,噸位大的核潛艇的暴露率就高,被發現被打擊的概率就高。可是目前的核潛艇因爲要考慮到盡量多裝載打擊武器,確保攻擊火力,盡量多裝降噪設備,水下噸位一再擴大是難以改變的趨勢,雙殼艇在這方面的困難尤其多,打個比方如果93和洛杉磯的水上噸位都爲6000噸,洛杉磯的儲備浮力是13%,其水下滿排大約在6900噸左右,而93要加上30%的儲備浮力和10%左右的非耐壓非水密容積量水下滿排可以達到8400噸之巨,如此大的噸位要在我國東海黃海區域作戰,因爲噸位過大,暴露率增高的問題是不得不考慮的。如果要降低水下滿排噸位,降低濕表面積降低暴露率,唯一的辦法就是縮小耐壓殼體容積,降低總艇體的水下滿排噸位,那麽其帶來的問題就是水下滿排噸位或許和洛杉磯一樣,但是艙室容積卻要小的多。這就是傳統雙殼體結構潛艇帶來的弊端~!(這裏688和93的噸位比較只是舉例,沒有真實性。)所以我說傳統的雙殼體結構潛艇並不適合我國在現代發達的反潛技術條件下的作戰。
當然單雙殼體的利弊不是那麽容易說清楚的,我曾經寫了一篇20000多字的關于東西方潛艇流派産生兩大殼體結構學說的文章,也只寫出了個皮毛,但是我認爲在目前發達的反潛技術條件下,雙殼體結構已經日趨落伍,而以單殼體結構爲主的殼體結構形式比如單殼體結構,單殼體爲主的單雙混合殼體結構將是將來潛艇結構發展的主要趨勢。
回應
說白了,雙殼體就是技術落後,不過因爲中國基本都是采用雙殼體,一般不敢明顯的說出來
也不能這麽說吧,雙殼體結構的形成有其曆史發展的必然性,只是隨著世界科技的發展,特別是潛艇技術和反潛技術的發展,殼體結構也必然是隨之改變和發展的。
TG潛艇部隊開始建立時師從蘇聯,毛子主要是發展雙殼體,從我們這麽些年來的經驗積累,對雙殼體的更爲熟悉和了解,且雙殼體的有點有很多,隨著我們工藝和技術的進步,外殼洞口和指揮塔的大小都會有大的改觀。所有必是雙殼無疑。
但是我想主線還是確定的吧,從傳統的雙殼體結構轉向單殼體的總趨勢應該是成立的,時間下一代會不會有如此明顯的轉變不好下結論,但是經過一代項目的准備後應該會有較大的轉變。現在39AB項目進度也很好,成熟度也非常不錯,短短那麽點研發時間就從立項到量産,說明國內的研發和制造體系已經徹底成熟了,現在投入力度又比較理想,以後新項目的研發時間會越來越短。
所以我上面說新時期下,傳統的雙殼體結構已經越來越不適應作戰需要。但是殼體結構轉變除了要從軍方的作戰思想轉變,設計方的設計思想轉變,還需要制造體系裏一些牽涉到建造工藝的配套體系轉變,是個比較複雜得過程。就設計標准的轉變來說就是很有很多工作要做,一時半會也急不來,畢竟我們沒有單殼體艇的設計和建造經驗。
更何況有些時候部隊的作戰思想轉變也是個很重要的過程,以往部隊用慣了雙殼艇,平衡容易,安全性好,十來個水櫃,撞破一兩個,或者被打破一兩個不成問題,照樣上浮照樣回家,換了單殼的破一點就是要命的十有八九上不來,部隊不扭轉作戰思想是不會接受單殼艇的,前蘇聯後期設計部門就有轉向單殼艇的想法,但是海軍一直都拒絕。
說道低還是無法從傳統的依靠大儲備浮力,水上抗沈性的思維力轉出來,轉到西方的低暴露率,高規避率思維下去,實際上新時期要保證潛艇的生命力還是要從降低暴露率,提高規避率著手。
都需要一個過程吧,總線路是確定,這點可以放心,只是需要時間~
單殼體研究是一直有的,不是主流。看近期水下爆炸和抗沖擊方面的論文,研究對象還是雙殼體的。
還是單雙混合殼體吧?畢竟很多設備如果能安裝在承壓殼體外還是很有好處的 ,聽說日本用的是單雙混合殼體,有倆者的優點,缺點是技術要求高,制造複雜。成本高
不能簡單得說單殼體隱蔽性一定比雙殼好,洛衫機的噪音比雙殼的阿庫拉如何呢?看到艦船知識99年某期中把MD給各國潛艇隱蔽性能的列表圖可知,改進型山雞的靜音性能都與改進阿庫拉有相當的差距,沒改進的跟VIII一個水平,所以才發展海狼來對付鯊魚.而且基洛的大洋黑洞不是假的吧?還有,小日本也是雙殼的簇擁.另外混合殼體也可以考慮
學霸不要一概而論,德國的潛艇算是代表了常規潛艇發展方向吧?在潛艇設計上一向采用單殼體結構的德國,在90年代最新設計的212型潛艇上卻一反常態采用了雙殼體結構。
老美下一代多用途核潛的方案之一,SMX-21概念也是雙殼體的....
http://bbs.cjdby.net/viewthread.php?tid=687947&extra=page%3D1
陸新型核潛艇093B航行照首曝光 搭載24具巡航導彈垂發單元 2024/10/13 中時
據《網易》報導,相較於第一代的091核潛艇,093核潛艇在核反應爐、靜音能力、探測能力、航速等方面有了大幅提升。093A採用了流暢型圍殼以及填角設計,水下航行阻力以及雜訊進一步降低。但沒能採用泵推進系統以及垂發系統。鷹擊-21高超音速導彈已經在055驅逐艦上服役,其最大射程為1500公里,末端突防速度高達10馬赫。
不過,093B採用的仍是有軸泵推,這種推進系統構造複雜,體積較大,不過較傳統的裸露螺旋槳已具有明顯優勢。
解放軍潛艦匿蹤技術 小步快走 2023-11-29 譚傳毅
潛艦的主要噪音源,包括機械振動噪音(主機、輔機、各種電機、減速裝置和空氣壓縮機等裝備)、俥葉噪音、水動力噪音(潛艦運動時,舵、指揮塔、上層建築等)、以及空氣噪音(艙室空氣噪音、柴油機水下排氣)等。
解放軍潛艦的降噪技術
第一,俥葉降噪技術。改進俥葉結構,採用大側斜、變距、多葉俥葉。葉片使用高阻尼合金材料可抑制槳葉振動,降低輻射噪音。如美國採用鎳銻合金,日本採用鐵鉻鋁合金等,使減振效果提高了20倍。
第二,泵噴射推進技術。無空泡、無機械噪音,是有軸泵噴推進潛艦的升級版。是著名的馬偉明團隊所科研攻關的重點專案,例如福建號航母的電磁彈射系統,比美海軍目前的「有軸」泵噴推進器先進許多。
第三,結構降噪設計。例如非常光滑並減少艇體開孔、指揮台與艦體交接處採取弧形圓滑過渡。
第四,消音瓦技術。第二代消音瓦克下降20分貝,探測有效距離下降了50%到70%。厚度在80到150mm之間,由合成橡膠製成。外層為實心固體,內層加入了適量的金屬粒子,並設置了不同尺寸的孔洞用於阻擋、吸收艦內發出的噪音。
第五,減震筏座技術,可降噪50到60分貝。
第六,AIP技術。深度可達200m,同時噪音大為降低。
未來097/098級潛艦技術:磁流體推進器技術(MHD)無須配備俥葉、齒輪傳動機構和軸泵等,是一種完全沒有機械噪音的安靜推進器。
恐癱瘓美航母 陸殺器罕見揭密 2024/08/06 中時
綜合《南華早報》(South China Morning Post)和《歐亞時報》(The EurAsian Times)報導,相關評估是根據央視6月19日播出的一段影片顯示, 039B型潛艦在解放軍演習中,以魚-10魚雷擊沉一艘靶艦做出的。在這罕見展示中方潛艦攻擊力的畫面中,很可能是1艘退役074型兩棲登陸艦的靶艦被一枚魚雷擊中,而艦尾隨著震波露出水面,還伴隨著近100米高的水柱。
而上個月播出的這段影片,是慶祝中方海軍潛艦部隊成立70周年紀錄片的一部分。
儘管官方未公布具體規格,但據中方軍事雜誌《兵工科技》說,這枚魚雷很可能是中國自製,約於2015年服役的魚-10。「從央視的影片來看,這種魚雷的威力意味著縱使是航母,也難逃沉沒的命運,更別說是驅逐艦,或船塢登陸艦了,」7月號的雜誌指出,「就算它們不沉沒,基本上也無法繼續作戰。」
文中指出,儘管這次測試的靶艦只有500噸,但從震波的規模看來,這款武器足以擊沉遠比這更大的船隻。文中說,魚雷在水下移動的影片顯示,它配備了先進「艉跡歸向技術」。「這種技術利用目標船隻產生的艉跡,來校準魚雷的方向,以更準確追蹤,並有效打擊移動目標,大大提高了魚雷的反應力和準確性,使它更能抵抗干擾。」
據估計,魚-10重型魚雷射程至少達50公里,可與美製MK-48Mod7魚雷相媲美,並已廣泛裝備中方海軍潛艦和水面艦。而最近在影片中發射魚雷的,似乎是北約代號為「元級」的039B型柴電潛艦。中方海軍共有17艘039B型現役潛艦,為常規潛艦的主力。而它們的「絕氣推進」(AIP)系統能在不靠大氣中氧氣的情況下,長時間執行任務。另一方面,升級版039C型潛艦經改進後,加強了靜音和匿蹤性能。
一種新型汽車兩棲機器人及其工作方法
一種新型兩棲機器人,其特徵包括上、下兩部分,其中上半部包括半圓球殼和圓盤,下半部至少包括三組驅動裝置和攝影機;其工作方法包括:通電、感測器判斷、選擇運動方式、運動狀態改變;其相應性滿足:水陸兩種環境中運動;同時能夠完成在陸地上多種運動;機器人靈活性好;噪音低;起始強;體積小易操作。
https://www.youtube.com/watch?v=EpxNq4Pfi2k
搶佔新一輪科技革命與產業變革新賽道 特種機器人 2024-07-22 中國青年報
在一個礦井巷道中飛滾而來的不是巨石和“滾地雷”,而是球形機器人;用手輕輕一拋就起飛的不是紙飛機,而是機器人;甚至連兒童動畫片中會飛的“狗狗”,爬水管、電線的“蜘蛛人”,都變成了生產一線的機器人。
前不久,中青報•中青網記者在採訪浙江省的一些科研院所和企業時發現,不少特種機器人從科研論文裡“走”了出來,走向了市場貨櫃,上天入地下海,“大顯神通」。而在這背後,是產學研開展全面合作,不走「閉門造車」老路子。
特種機器人快速崛起
在浙江省衢州市110千伏天寧變電站,有一個身高約2公尺的智慧機器人。
浙江大學湖州研究院工程師王超說,他們正在測試一款會飛的“機器狗”,分別在其胸腔內嵌二涵道,或在四條腿上內嵌四涵道,除具備快速行走、空翻、跳躍、攻擊能力外,還能離地飛行3分鐘,跨越河流與各種障礙物。
更重要的是,劉維維認為,特種機器人研發,引進並應用了大量新材料和製造技術,往往需要生物學、物理學、化學、材料科學、電腦科學等多個學科的交叉合作,促進機器人產業升級換代,推動機器人學、人工智慧、仿生學等科技前線的學術研究。
尤其是現在,科學研究人員還要持續追蹤並引進人工智慧、物聯網、大數據等尖端技術,提升「變型」機器人的智慧化和互聯化程度。
2023年中國工業機器人佔全球51%,比美、日、韓、德安裝總量3倍還多 2024-09-25
國際機器人聯合會(IFR)《2024世界機器人報告》顯示,2023年工業機器人銷售量下降至54.13萬台,年減 2.1%,但安裝數量連續第三年超過了50萬台;2023年服務機器人市場持續成長,全球專業服務機器人(含自主移動機器人,AMR)的安裝量為20.5萬台,成長30%。醫療機器人的安裝量為6200台,成長36%。消費者服務機器人的安裝量為410萬台,成長了1%。