2018-11-10 22:54:48幻羽

蟲洞──連結兩個遙遠時空的多維空間隧道

 

             蟲洞──連結兩個遙遠時空的多維空間隧道

時空洞(sofa)又稱愛因斯坦-羅森橋,也譯作蛀孔。是宇宙中可能存在的連接兩個不同時空的狹窄隧道。蟲洞是1916年由奧地利物理學家路德維希·弗萊姆首次提出的念,1930年由愛因斯坦及納森·羅森在究引力場方程時假設的,認透過蟲洞可以做暫態的空間轉移或者做時間旅行。

由阿爾伯特·愛因斯坦提出該理論。簡單地說,蟲洞就是連接宇宙遙遠區域間的時空細管。暗物質維持著蟲洞出口的開。蟲洞可以把平行宇宙和嬰兒宇宙連接起來,並提供時間旅行的可能性。蟲洞也可能是連接黑洞和白洞的時空隧道,所以也叫"灰道"

理論上,蟲洞是連結兩個遙遠時空的空間隧道,就像是大海裏面的渦,是無處不在但轉瞬即逝的。這些時空渦是由星體旋轉和引力作用共同造成的。就像渦能讓局部水面跟水底離得更近一樣,能讓兩個相對距離很遠的局部空間瞬間離得很近。不過有人假想一種奇異物質可以使蟲洞保持張開,也有人假設如果存在一種叫做幻影物質(Phantom matter)的奇異物質的話,因其同時具有正能量和負品質,因此能創造排斥效應以防止蟲洞關閉。

迄今止,科學家們還沒有觀察到蟲洞存在的證據。了與其他種類的蟲洞進行區分,一般通俗所稱蟲洞應被稱時空洞

宇宙中的蟲洞是科學家推測可能存在的一種特殊隧道,的兩頭連接著兩個遙遠的時空,理論上說,如果能從蟲洞的一端穿越到另一端,就能實現超越光速的時空旅行。

蟲洞念最早於1916年由奧地利物理學家路德維希·弗萊姆提出,並於1935年由愛因斯坦及納森·羅森加以完善,因此,蟲洞又被稱作愛因斯坦羅森橋” 。一般情況下,人們口中的蟲洞時空蟲洞的簡稱,被認是宇宙中可能存在的捷徑,物體通過這條捷徑可以在瞬間進行時空轉移。但愛因斯坦本人並不認蟲洞是客觀存在的,所以,蟲洞在後來的幾十年中,都被認只是個數學伎倆 ”

1962年,羅伯特.富勒和約翰.惠勒發表論文證明如果蟲洞連接同一宇宙的兩個部分,那這類蟲洞是不穩定的。1963年,新西蘭數學家羅伊·克爾提出假設,使得蟲洞的存在重新獲得了理論支持 。和人類一樣,恒星也會經歷生老病死的過程,克爾認,如果恒星在接近死亡時能保持旋轉,就會形成我們在電影中看到的動態黑洞。當我們像電影中那樣沿著旋轉軸心將物體發射進入後,若是能突破黑洞中心的重力場極限,就會進入所謂的鏡像宇宙。《星際穿越》中的宇航員庫珀在黑洞中所處的超維度空間,其實就可以被看作是對鏡像宇宙的一種解讀。從宇宙進入鏡像宇宙,本身就是一次時空穿越

銀河系蟲洞說源自在暗物質究上取得的突破。暗物質是指不與電磁力生作用、無法通過電磁波的觀測進行究的物質。與蟲洞不同的是,人們已經通過引力效應證實了宇宙中有大量暗物質存在。的里雅斯特國際高等究院課題組在2013年繪製了一非常詳細的銀河系暗物質分佈圖,將其與最新究得出的宇宙大爆炸模型結合後,發現銀河系中不僅具備存在蟲洞的條件,甚至整個銀河系都可能是個巨大的蟲洞 ”

按照義大利天體物理學家保羅·薩魯奇等人建立的理論模型來看,這樣的假設確實有可能得到證實,而其更大的意義在於,將促使科學家對暗物質究進行準確的重新思考:暗物質是否就是另一個維度的存在?或者,本身就是一個星際交通的運輸系統?

蟲洞說目 前仍是一種假設,但科學的進步離不開大膽的假設。人們一度認物質的最小組成單位是原子,後來又發現了中子和質子。同樣,長久以來,人類也曾認宇宙是由物質構成的,但暗物質的存在推翻了這一結論。科學假設的意義,就在於擺脫現有束縛,通過不斷地自我否定和懷疑,推進人類對宇宙的瞭解和自身的進步。正如薩魯奇所言:在任何情況下,我們都需要問自己,那到底是什 

蟲洞的念最初生於對史瓦西解的究中。理論物理學家在分析白洞解的時候,通過一個阿爾伯特·愛因斯坦的思想實驗,發現宇宙時空自身可以不是平坦的。如果恒星形成了黑洞,那時空在史瓦西半徑,也就是視界的地方與原來的時空垂直。在不平坦的宇宙時空中,這種結構就意味著黑洞。

視界內的部分會與宇宙的另一個部分相結合,然後在那裏生一個洞。這個洞可以是黑洞,也可以是白洞。而這個彎曲的視界,就叫做史瓦西喉,就是一種特定的蟲洞。

自從在史瓦西解中發現了蟲洞,物理學家們就開始對蟲洞的性質發生了興趣。

蟲洞連接黑洞和白洞,在黑洞與白洞之間通過這個蟲洞(即阿爾伯特·愛因斯坦羅森橋)被傳送到白洞並且被輻射出去。

蟲洞還可以在宇宙的正常時空中顯現,成一個突然出現的超時空。理論推出的蟲洞還有許多特性,限於篇幅,這裏不再贅述。

總之,我們對黑洞、白洞和蟲洞的本質瞭解還很少,們還是神秘的東西,很多問題仍需要進一步探討。天文學家已經間接地找到了黑洞,但白洞、蟲洞並未正發現,還只是一個經常出現在科幻作品中的理論名詞。

宇宙中,宇宙項幾乎零。所謂的宇宙項也稱空的能量,在沒有物質的空間中,能量也同樣存在。

在其內部,這是由愛因斯坦所導入的。宇宙初期的膨脹宇宙,宇宙項是必須的,而且,在基本粒子論裏,也認為真空中的能量是自然呈現的。那何宇宙的宇宙項變零呢?柯爾曼說明:在爆炸以前的初期宇宙中,蟲洞連接著很多的宇宙,很巧妙地將宇宙項的大小調整零。結果,由一個宇宙可能生另一個宇宙,而且,宇宙中也有可能有無數個這種微細的洞穴,們可通往一個宇宙的過去及未來,或其他的宇宙。

即使蟲洞存在並且是穩定的,穿過們也是十分不愉快的。貫穿蟲洞的輻射(來自附近的恒星,宇宙的微波背景等等)將藍移到非常高的頻率。當試著穿越蟲洞時,將被這些X射線和伽瑪射線焦。蟲洞的出現,幾乎可以說是和黑洞同時的。

如果1200站在蟲洞的一端(入口)就會於1200從蟲洞的另一端(出口)出來。


蟲洞(Wormhole),又稱愛因斯坦-羅森橋,是宇宙中可能存在的連接兩個不同時空的狹窄隧道。

物理學家在分析白洞解的時候,通過一個阿爾伯特愛因斯坦的思想實驗,發現宇宙時空自身可以不是平坦的。在不平坦的宇宙時空中,這種結構就意味著黑洞視界內的部分會與宇宙的另一個部分相結合。

蟲洞連接黑洞和白洞,在黑洞與白洞之間傳送物質。在這裏,蟲洞成一個阿爾伯特·愛因斯坦羅森橋,物質在黑洞的奇點處被完全瓦解基本粒子,然後通過這個蟲洞(即阿爾伯特?愛因斯坦羅森橋)被傳送到白洞並且被輻射出去。

蟲洞可以作一個超時空管道還可在宇宙的正常時空中顯現。

蟲洞沒有視界,只有一個和外界的分介面,蟲洞通過這個分介面進行超時空連接。蟲洞與黑洞、白洞的介面是一個時空管道和兩個時空閉合區的連接,在這裏時空曲率並不是無限大,因而我們可以安全地通過蟲洞,而不被巨大的引力摧

黑洞、白洞、蟲洞仍然是當前宇宙學中時空與引力篇章的懸而未解之謎。黑洞是否實存在,科學家們也只是得到了一些間接的旁證。當前的觀測及理論也給天文學和物理學提出了許多新問題,例如,一顆能形成黑洞的冷恒星,當坍縮時,其密度已然會超過原子核、核子、中子……,如果再繼續坍縮下去,中子也可能被壓碎。那,黑洞中的物質基元究竟是什呢?有什斥力與引力對抗才使黑洞停留在某一階段而不再繼續坍縮呢?如果沒有斥力,那黑洞將無限地坍縮下去,直到體積無窮小,密度無窮大,內部壓力也無窮大,而這卻是物理學理論所不允許的。

如今的宇宙中,宇宙項幾乎零。

物理學家一直認,蟲洞的引力過大,會滅所有進入的東西,因此不可能用在宇宙旅行之上。但是,假設宇宙中有蟲洞這種物質存在,那就可以有一種說法:如果1200站在蟲洞的一端(入口),那就會於1200從蟲洞的另一端(出口)出來。

蟲洞(Wormhole),又稱愛因斯坦-羅森橋,是宇宙中可能存在的連接兩個不同時空的狹窄隧道。

蟲洞的自然生機制有兩種:

其一,是黑洞的大引力能。

其二,是克爾黑洞的快速旋轉,其倫斯——梯林效應將黑洞周圍的能層中的時空撕開一些小口子。這些小口子在引力能和旋轉能的作用下被擊穿,成一些十分小的蟲洞。這些蟲洞在黑洞引力能的作用下,可以確定們的出口在那裏,但是還不可能完全完成,因量子理論和相對論還沒有完全結合。

 

想像中的蟲洞

蟲洞的出現,幾乎可以說是和黑洞同時的。蟲洞在史瓦西解中第一次出現,是當物理學家們想到了白洞的時候。他們通過一個愛因斯坦的思想實驗,發現時空可以不是平坦的,而是彎曲的。

我們先來看一個蟲洞的經典作,將物質在黑洞的奇點處被完全瓦解基本粒子,然後通過這個蟲洞(即愛因斯坦羅森橋)被傳送到這個白洞的所在,並且被輻射出去。當然,前面說的僅僅是蟲洞作一個黑洞和白洞之間傳送物質的道路,但是蟲洞的作用遠不只如此。

黑洞和黑洞之間也可以通過蟲洞連接,當然,這種連接無論是如何的將強它還是僅僅是一個連通的宇宙監獄,但有的人說白洞與黑洞中的微子互相湮滅能生無窮大的能量時時空曲,從而使人類越獄,個例子:一個大力士被關在牢籠中,他有幾種方法可以逃脫出去:1.把牢門彎,2.或者食使自己變成瘦子,從而逃出牢門。蟲洞不僅可以作一個連接洞的工具,還在宇宙的正常時空中出現,成一個突然出現在宇宙中的超空間管道,

蟲洞沒有視界,因而我們可以安全地通過蟲洞,而不被巨大的引力所。蟲洞或許可以從一個有限時間傳送到一個無限時間點上,或許就聯繫著現在與未來。

 

原理

早在19世紀50年代,已有科學家對蟲洞作過究,由於當時歷史條件所限,一些物理學家認,理論上也許可以使用蟲洞,但蟲洞引力過大,會滅所有進入的東西,因此不可能用在宇宙航行上。瞬間移動的可能,如同超時空轉換。隨著科學技術的發展,新的究發現,蟲洞的超力場可以通過負能量來中和,達到穩定蟲洞能量場的作用。科學家認,相對於生能量的正物質反物質也擁有負品質,可以吸去周圍所有能量。像蟲洞一樣,負品質也曾被認只存在於理論之中。不過,當前世界上的許多實驗室已經成功地證明了負品質能存在于現實世界,並且通過航天器在太空中捕捉到了微量的負品質

據科學家猜測,宇宙中充斥著數以百萬計的蟲洞,但很少有直徑超過10萬公里的,而這個寬度正是太空飛船安全航行的最低要求。負品質的發現利用蟲洞創造了新的契機,可以使用去擴大和穩定細小的蟲洞。科學家指出,如果把負品質傳送到蟲洞中,把蟲洞打開,並的結構,使其穩定,就可以使太空飛船通過。

而然,蟲洞只能回到過去。所謂的瞬間移動,其實就是利用蟲洞兩點之間的時間差。打個比方說,A點的時間比B點快;而兩點的時間就是水,水只會從高處流到低處;而因A點的時間比較快,因此A點可以通過蟲洞去B點,因其中的時間差,所以到達B點時,人會感覺到好像沒有用上多少的時間;同時地,B點無法通過蟲洞到達A點,因時間的排擠--中間的時間差,造成了時間斷層。至於A點出發則沒有斷層--還是因時間差。當從A點出發時,時間是X點;而到達B點時,B點的時間才剛剛是X點,時間可以被完全地銜接起來。而唯一從較慢的時間點前往較快的時間點,只能利用光速。

利用相對論在不考慮一些量子效應和除引力以外的任何能量的時候,我們得到了一些十分簡單、基本的關於蟲洞的描述。這些描述十分重要,但是由於我們究的重點是黑洞,而不是宇宙中的洞,因此我在這裏只簡單介紹一下蟲洞的性質,而對於一些相關的理論以及這些理論的描述,這裏先不涉及。

蟲洞有些什性質呢?最主要的一個,是相對論中描述的,用來作宇宙中的高速火車。但是,蟲洞的第二個重要的性質,也就是量子理論告訴我們的東西又明確的告訴我們:蟲洞不可能成一個宇宙的高速火車。蟲洞的存在,依賴於一種奇異的性質和物質,而這種奇異的性質,就是負能量。只有負能量才可以維持蟲洞的存在,保持蟲洞與外界時空的分解面持續打開。當然,狄拉克在芬克爾斯坦參照系的基礎上,發現了參照系的選擇可以幫助我們更容易或者難地來分析物理問題。同樣的,負能量在狄拉克的另一個參照系中,是非常容易實現的,因能量的表現形式和觀測物體的速度有關。這個結論在膜規範理論中同樣起到了十分重要的作用。根據參照系的不同,負能量是十分容易實現的。在物體以近光速接近蟲洞的時候,在蟲洞的周圍的能量自然就成了負的。因而以接近光速的速度可以進入蟲洞,而速度離光速太大,那物體是無論如何也不可能進入蟲洞的。這個也就是蟲洞的特殊性質之一。

時間是一個計量事件過程的長短、次序類別名詞。時間是人類用以描述物質運動過程或事件發生過程的一個參數,確定時間,是靠不受外界影響的物質週期變化的規律。例如月球繞地球週期,地球繞太陽週期,地球自轉週期,原子震盪週期等。

時間在數學、物理上用坐標軸表示。時間時會出現什狀況?樣利用時間的本質來思考衰老的問題?下面開始細緻的分析,內容包括:有些事件可以同時發生,有些卻不能?時間與我們有什關係?

蟲洞是廣義相對論中出現的念,是指宇宙中一種奇特的天體。儘管沒有實驗證據表明蟲洞的實存在,但科學家預測以時空端點之間的捷徑形式而存在,並想像蟲洞連接著空洞的太空區域。然而,最新一項究表明蟲洞可能存在於遙遠的恒星之間。們並非時空隧道,蟲洞中包含著接近完美程度的流體,可在兩顆恒星之間來回流動,這種流體特徵或許是證實蟲洞存在的跡象。

這項最新究觀點使科學家們置疑是否蟲洞可能存在于不同的普通恒星和中子星。比如:那些正常的恒星和中子星。但們可能一些能被探測到的差異特徵。了調這些差異特徵,究人員設計了一個普通恒星中心帶有通道的模型,宇宙物質可在該通道中穿行。兩顆恒星共同分享一個蟲洞將具有獨特的連接性,這是由於蟲洞具有兩個通道口。

由於蟲洞中的奇特物質能像恒星之間的液體一樣流動,兩顆恒星將出現不同尋常的脈動方式,這種脈動將釋放不同類型的能量,比如:超能量。科學家提出的兩種蟲洞,一個用於在我們所處的宇宙進行星際和星系際旅行,一個用於往返於不同宇宙之間蟲洞是一條可以進行時空穿梭的神奇隧道,讓星際甚至星系際旅行不再是一個夢想。科學家認蟲洞極其不穩定,如果沒有一種帶有負能量的奇異物質讓洞口保持張開狀態,蟲洞會在瞬間突然閉合。然而,根據德國和希臘物理學家進行的究,蟲洞無需借助這種奇異物質便可處於張開狀態。這一究發現意味著人類可能在將來的某一天在太空中發現蟲洞。也許,一個先進程度遠超過人類的文明已經借助蟲洞構成的星系際地鐵系統往返於不同星系之間,蟲洞是時間機器?或可連接兩個不同時空:天體物理學家認蟲洞是一種天然的時間機器,維持蟲洞的開放可以使我們回到過去或者進入未來,當然還沒證據顯示宇宙中存在宏觀蟲洞

我們只是根據愛因斯坦的廣義相對論預言對這一奇特的時空進行究。時間機器只在科幻片中出現,事件逆著時間箭頭方向前進幾乎不可能發生,但是愛因斯坦的時空理論允許時間旅行,相對論中預言的某些特定時空可以使時間倒退,通過時空彎曲將兩個遙遠的空間連接在一起,使得三維空間的旅行變得非常迅速數萬光年的旅程會被大大壓縮。

天體物理學家埃裏克·大衛斯認如果我們能維持一個蟲洞的連續開放,就可以回到過去或者進入未來世界,但是蟲洞在兒?我們還沒有發現蟲洞在現實宇宙中存在的證據,如果蟲洞確實存在,那可能連一個人也裝不下更何況是一艘飛船。對此,物理學家們提出了一種被稱封閉類時曲線的理論,暗示時間機器是可以被製造出來。利用蟲洞穿越時空可以滿足光速上限論的要求,超光速運行實際上就時空曲的結果,通過高度曲時空達到超光速的效果。

按照科學家的究,維持一個蟲洞的連續開放需要大量的奇異外來物質,這種物質我們對其知之甚少其中將涉及到量子理論,而廣義相對論無法解釋這些奇異物質。天體物理學家羅伯特·歐文認物體在進入蟲洞試圖進行時間旅行時,會有多種物理定律限制其工作,似乎是自然界的某種機制將蟲洞關閉。根據量子理論,維持蟲洞的時間機器可能導致大量的能量聚集,最終會蟲洞,因此我們必須在蟲洞關閉之前完成時間旅行在究蟲洞之前,科學家們需要花時間去處理廣義相對論和量子理論之間的問題,新的理論將作時間旅行的基礎,蟲洞有幾種說法:

一是空間中的隧道,就像一個球體,要是沿球面走就遠了。但如果走的是球裏的一條直徑就近了,蟲洞就是直徑!

二是黑洞與白洞的聯繫。黑洞可以生一個勢,白洞則可以生一個反勢。宇宙是三維的,將勢看作第四維,那蟲洞就是連接勢和反勢的第五維。假如畫出宇宙、勢、反勢和蟲洞的圖像,就像一個克萊因——口是黑洞,身和頸的交界處是白洞,頸是蟲洞!

三是說的時間隧道,根據愛因斯坦所說的可以進行時間旅行,但只能看,就像看電影,卻無法改變發生的事情,因時間是線性的,事件就是一個個珠子已經穿好,無法改變珠子也無法調動順序!

四是周圍以固定方式受力,造成的巨大推力造成的受力空間搬運。比如一段空在水中,以某種形狀突然受到水的補,巨大的水壓所造成的壓力將其中的東西推出所形成的現象。或許這是可以通過借用自然中所擁有的力所可以實現的,就可借水流之力發電一樣,不過是再拐個彎。

我們討論的都是普通完美黑洞。細節上,我們討論的黑洞都不旋轉也沒有電荷。如果我們考慮黑洞旋轉同時/或者帶有電荷,事情會變的更複雜。特別的是,有可能跳進這樣的黑洞而不撞到奇點。結果是,旋轉的或帶有電荷的黑洞內部連接一個相應的白洞,可以跳進黑洞而從白洞中跳出來。這樣的黑洞和白洞的組合叫做蟲洞!

白洞有可能離黑洞十分遠;實際上甚至有可能在一個不同的宇宙”--那就是,一個時空區域,除了蟲洞本身,完全和我們在的區域沒有連接。一個位置方便的蟲洞會給我們一個方便和快捷的方法去旅行很長一段距離,甚至旅行到另一個宇宙。或許蟲洞的出口停在過去,這樣可以通過而逆著時間旅行。總的來說,們聽起來很酷。

但在認定那個理論正確而打算去尋找們之前,應該知道兩件事。首先,蟲洞幾乎不存在。正如我們上面我們說到白洞時,只因為它們是方程組有效的數學解並不表明們在自然中存在。特別的,當黑洞由普通物質坍塌形成(包括我們認存在的所有黑洞)並不會形成蟲洞。如果掉進其中的一個,並不會從什地方跳出來。會撞到奇點,那是唯一可去的地方!

還有,即使形成了一個蟲洞,也被認是不穩定的。即使是很小的擾動(包括嘗試穿過的擾動)都會導致坍塌。

在史瓦西發現了史瓦西黑洞以後,理論物理學家們對愛因斯坦常方程的史瓦西解進行了幾乎半個世紀的探索。包括上面說過的克爾解、雷斯勒——諾斯特朗姆解以及後來的紐曼解,都是圍繞史瓦西的解究出來的成果。我在這裏將介紹給大家的蟲洞,也是史瓦西的後代。

當物理學家們想到了白洞的時候,蟲洞第一次在史瓦西解中出現。物理學家們通過一個愛因斯坦的思想實驗,發現時空可以是彎曲的。在這種情況下,我們會十分驚奇的發現,如果恒星形成了黑洞,那時空在史瓦西半徑,也就是視界的地方是與原來的時空完全垂直的。

自從在史瓦西解中發現了蟲洞,物理學家們就開始對蟲洞的性質感到好奇!我們先來看一個蟲洞的經典作用:連接黑洞和白洞,成一個愛因斯坦——羅森橋,將物質在黑洞的奇點處被完全瓦解基本粒子,然後通過這個蟲洞(即愛因斯坦——羅森橋)被傳送到這個白洞的所在,並且被輻射出去。

蟲洞沒有視界,有的僅僅是一個和外界的分解面。蟲洞通過這個分解面和超空間連接,但是在這裏時空曲率不是無限大。就好比在一個在平面中一條曲線和另一條曲線相切,在蟲洞的問題中,就好比是一個四維管道和一個三維的空間相切,在這裏時空曲率不是無限大。因而我們可以安全地通過蟲洞,而不被巨大的引力所摧

天體物理學家認蟲洞是一種天然的時間機器,維持蟲洞的開放可以使回到過去或者進入未來,當然還沒證據顯示宇宙中存在宏觀蟲洞,天體物理學家稱蟲洞可能是一種天然的時間機器,雖然超越蟲洞的行從沒有出現過,而且蟲洞本身是否實存在也沒有直接證據證實,只是根據愛因斯坦的廣義相對論預言對這一奇特的時空進行究。

天體物理學家埃裏克·大衛斯認如果能維持一個蟲洞的連續開放,就可以回到過去或者進入未來世界,但是蟲洞在兒?還沒有發現蟲洞在現實宇宙中存在的證據。

奇異外來物質對其知之甚少其中將涉及到量子理論,因此在究蟲洞之前,必須在蟲洞關閉之前完成時間旅行。

 

遙遠時空

據國外媒體報導,暗物質是宇宙中最難以捉摸的成分之一,科學家們試圖找到最新的證據來匹配空間數學模型。然而到目前止人類仍無法直接看到或探測到的蹤跡,物理學家相信神秘物質補了宇宙大量的虛空區域,而像行星、恒星這一類物質組成了這個東西。但一篇新的究表示向超大品質黑洞增加少量的暗物質會生宇宙中最奇怪的物體之一——蟲洞。蟲洞是虛幻小說裏的內容,理論家把們描述一個穿越時空的隧道,其可以連接宇宙中的兩個遙遠的時空。

蘭卡斯特大學的一個物理學家Konstantinos Dimopoulos博士表示,在一些星系的中心,緻密分佈的氣體和塵埃在一個超大品質黑洞的周圍非常明亮,發出極的光和熱,大的磁場從黑洞噴射出來,影響暗物質的特性。由於燃燒的星系核攪動,Dimopoulos博士表示尤其是暗物質的一種類型,軸子將會被影響。這些反物質的粒子被認是存在於整個宇宙中,彼此弱相互作用並有助於星系結構的形成——像一層隱形的薄霧彌漫在星系中。

Dimopoulos博士表示在星系攪動的中心濃縮時,烈的旋渦磁場會使其生奇怪的作用,將有效地切換至負能量的狀態。當這種暗物質出現在星系中心一個超大品質黑洞周圍時,三個要素——超大品質黑洞、螺旋磁場,軸子暗物質,能結合形成蟲洞。Dimopoulos博士表示負密度物質的出現以及磁場可以迫使蟲洞的外觀在活動星系核的中心。但物理學家補充說超大品質黑洞切換到穩定的蟲洞可能對星系周圍是怎麼形成的以及們如何相互作用有深遠的影響。

蟲洞不像黑洞,理論上可以是單向或雙向,都可以導致物質從宇宙的一個區域噴到另一個區域。因超大品質黑洞的奇異,蟲洞會是宇宙無限彎曲的一個點。由於反物質的負密度,將使軸子被磁場轉變,對周圍的星系生巨大的影響。Dimopoulos博士表示如果暗物質是軸子的,可見先進的文明可以生人造的螺旋磁場,有相應的特性來改變局部暗物質的性質,並或許可以生蟲洞。這可能成實現星際旅行或時空旅行的方式。 

 

星空前沿

探索星空是人類一個恒久的夢想。在晴朗的夜,每當我們仰起頭來,就會看到滿天的繁星。自古以來星空以無與倫比的浩瀚、深邃、美麗及神秘激起著人類無數的遐想。著名的美國科幻電視連續劇《星際旅行》(Star Trek) 中有這樣一句簡短卻意味無窮的題記:星空,最後的前沿(Space, the final frontier)當我第一次觀看這個電視連續劇的時候,這句用一種帶有磁性的話外音念出的題記給我留下了令人神往的印象。

在遠古的時候,人類探索星空的方式是肉眼,後來開始用望遠鏡,但人類邁向星空的第一步則是在一九五七年那一年,人類發射的第一個航天器終於飛出了我們這個藍色星球的大氣層。十二年後,人類把足跡留在了月球上三年之後,人類向外太陽系發射了先驅者十號深空探測器。一九八三年,先驅者十號飛離了海王星軌道,成人類發射的第一個飛離太陽系的航天器,從人類發射第一個航天器以來,短短二十幾年的時間裏,齊奧爾科夫斯基所預言的人類首先將小心翼翼地穿過大氣層, 然後再去征服太陽周圍的整個空間就成了現實,人類探索星空的步履不可謂不迅速。但是,相對於無盡的星空而言,這種步履依然太過緩慢。 率先飛出太陽系的先驅者十號如今正在一片冷寂的空間中滑行著,在滿天的繁星之中,要經過多少年才能飛臨下一顆恒星呢?答案是兩百萬年!那時將飛臨距離我們六十八光年的金牛座(Taurus)。六十八光年的距離相對於地球上的任何尺度來說都是極其巨大的,但是相對于遠在三萬光年之外的銀河系中心,遠在兩百二十萬光年之外的仙女座大星雲遠在六千萬光年之外的室女座星系團,以及更遙遠的其他天體來說無疑是微不足道的。人類的好奇心是沒有邊界的,可是即便人類航天器的速度再快上許多倍,甚至接近物理速度的上限-光速,用星際空間的距離來衡量依然是極其緩慢的,那,有沒有什辦法可以讓航天器以某種方式變相地突破速度上限,從而能在很短的時間內跨越那些近乎無限的遙遠距離呢?科幻小說家們率先展開了想像的翅膀,旅行天堂一九八五年,美國康乃爾大學(Cornell University) 的著名行星天文學家卡爾·薩根(Carl Sagan) 寫了一部科幻小說叫做《接觸》(Contact)。薩根對探索地球以外的智慧生物有著濃厚的興趣,他客串科幻小說家的目的之一是要尋找外星智慧生物的 SETI 計畫籌集資金他的這部小說後來被拍成了電影,他贏得了廣泛的知名度,

薩根在他的小說中敍述了一個動人的故事:一位名叫艾麗(Ellie) 的女科學家收到了一串來自外星球智慧生物的電波信號。經過究,發現這串信號包含了建造一台特殊設備的方法,那台設備可以讓人類與信號的發送者會面經過努力,艾麗與同事成功地建造起了這台設備,並通過這台設備跨越了遙遠的星際空間與外星球智慧生物實現了第一次接觸。

但是,艾麗與同事按照外星球智慧生物提供的方法建造出的設備究竟利用了什方式讓旅行者跨越遙遠的星際空間的呢?這是薩根需要大膽幻想的地方。他最初的設想是利用黑洞。但是薩根畢竟不是普通的科幻小說家,他的科學背景使他希望自己的科幻小說盡可能地不與已知的物理學定律相矛盾。於是他給自己的老朋友加州理工大學(California Institute of Technology) 的索恩(Kip S. Thorne) 授打了一個電話。索恩是究引力理論的專家,薩根請他自己的設想做一下技術評估。索恩經過思考及粗略的計算,很快告訴薩根黑洞是無法作星際旅行的工具的,他建議薩根使用蟲洞 (wormhole) 這個念。據我所知,這是蟲洞這一名詞第一次進入科幻小說中在那之後,各種科幻小說、電影、及電視連續劇相繼採用了這一名詞,蟲洞逐漸成了科幻故事中的標準術語這是科幻小說家與物理學家的一次小小交流結出的果實。

薩根與索恩的交流不僅科幻小說帶來了一個全新的術語,也物理學開創了一個新的究領域。在物理學中,蟲洞這一念最早是由米斯納(C. W. Misner) 與惠勒(J. A. Wheeler) 於一九五七年提出的,與人類發射第一個航天器恰好是同一年。那究竟什是蟲洞?會被科幻小說家視星際旅行的工具呢? 讓我們用一個簡單的例子來說明:大家知道,在一個蘋果的表面上從一個點到另一個點需要走一條弧線,但如果有一條蛀蟲在這兩個點之間蛀出了一個蟲洞,通過蟲洞就可以在這兩個點之間走直線,這顯然要比原先的弧線來得近。把這個類比從二維的蘋果表面推廣到三維的物理空間,就是物理學家們所說的蟲洞,而蟲洞可以在兩點之間形成快捷路徑的特點正是科幻小說家們喜愛蟲洞的原因。只要存在合適的蟲洞,無論多遙遠的地方都有可能變得近在咫尺,星際旅行家們將不再受制於空間距離的遙遠。在一些科幻故事中,技術水準高度發達的文明世界利用蟲洞進行星際旅行就像今天的我們利用高速公路在城間旅行一樣。在著名的美國科幻電影及電視連續劇《星際之門》(Stargate,港臺譯星際奇兵) 中人類利用外星文明留在地球上的一台被稱星際之門的設備可以與其他許多遙遠星球上的星際之門建立蟲洞連接,從而能幾乎暫態地把人和設備送到那些遙遠的星球上。蟲洞成了科幻故事中星際旅行家的天堂。

不過米斯納與惠勒所提出的蟲洞是極其微小的,並且在極短的時間內就會消失,無法成星際旅行的通道。薩根的小說發表之後,索恩對蟲洞生了濃厚的興趣, 並和他的學生莫里斯(Mike Morris) 開始對蟲洞作深入的究。與米斯納和惠勒不同的是,索恩感興趣的是可以作星際旅行通道的蟲洞,這種蟲洞被稱可穿越蟲洞 (traversable wormhole)

 

負能量物

樣的蟲洞能成可穿越蟲洞呢?一個首要的條件就是必須存在足長的時間,不能沒等星際旅行家穿越就先消失。因此可穿越蟲洞首先必須是足穩定的。一個蟲洞樣才可以穩定存在呢?索恩和莫里斯經過究發現了一個不太妙的結果,那就是在蟲洞中必須存在某種能量負的奇特物質!會有這樣的結論呢?那是因物質進入蟲洞時是向內彙聚的,而離開蟲洞時則是向外飛散的,這種由彙聚變成飛散的過程意味著在蟲洞的深處存在著某種排斥作用。由於普通物質的引力只能生彙聚作用,只有負能量物質才能夠產生這種排斥作用。因此,要想讓蟲洞成星際旅行的通道,必須要有負能量的物質。索恩和莫里斯的這一結果是人們對可穿越蟲洞進行究的起點。

索恩和莫里斯的結果不太妙呢?因人們在宏觀世界裏從未觀測到任何負能量的物質。事實上,在物理學中人們通常把空的能量定零。所謂空就是一無所有,而負能量意味著比一無所有的空具有更少的物質,這在經典物理學中是近乎於自相矛盾的說法。

但是許多經典物理學做不到的事情在二十世紀初隨著量子理論的發展卻變成了可能。負能量的存在很幸運地正是其中一個例子。在量子理論中,空不再是一無所有,具有極複雜的結構,每時每刻都有大量的虛粒子對生和湮滅。一九四八年,荷蘭物理學家凱西米爾(Hendrik Casimir) 究了空中兩個平行導體板之間的這種虛粒子態,結果發現們比普通的空具有更少的能量,這表明在這兩個平行導體板之間出現了負的能量密度!在此基礎上他發現在這樣的一對平行導體板之間存在一種微弱的相互作用。他的這一發現被稱卡什米爾效應。將近半個世紀後的一九九七年,物理學家們在實驗上證實了這種微弱的相互作用,從而間接地負能量的存在提供了證據。除了卡什米爾效應外,二十世紀七八十年代以來,物理學家在其他一些究領域也先後發現了負能量的存在。

因此,種種令人興奮的究都表明,宇宙中看來的確是存在負能量物質的。但不幸的是,迄今所知的所有這些負能量物質都是由量子效應生的,因而數量極其微小。以凱西米爾效應(Casimireffect)例,倘若平行板的間距一米生的負能量的密度相當於在每十億億立方米的體積內才有一個(負品質的) 基本粒子!而且間距越大負能量的密度就越小。其他量子效應所生的負能量密度也大致相仿。因此在任何宏觀尺度上由量子效應生的負能量都是微乎其微的。

另一方面,物理學家們對維持一個可穿越蟲洞所需要的負能量物質的數量也做了估算,結果發現蟲洞的半徑越大,所需要的負能量物質就越多。具體地說,了維持一個半徑一公里的蟲洞所需要的負能量物質的數量相當於整個太陽系的品質。

如果說負能量物質的存在給利用蟲洞進行星際旅行帶來了一絲希望,那這些更具體的究結果則給這種希望潑上了一盆無情的冷水。因一方面迄今所知的所有生負能量物質的效應都是量子效應,所生的負能量物質即使用微觀尺度來衡量也是極其微小的。另一方面維持任何宏觀意義上的蟲洞所需的負能量物質卻是一個天文數字!這兩者之間的巨大鴻溝無疑給建造蟲洞的前景蒙上了濃重的陰影。

 

探險地獄

雖然數字看起來令人沮喪,但是別忘了當我們討論蟲洞的時候,我們是在討論一個科幻的話題。然是討論科幻的話題,我們姑且把眼光放得樂觀些。即使我們自己沒有能力建造蟲洞,或許宇宙間還存在其他文明生物有能力建造蟲洞, 就像《星際之門》的故事那樣。甚至,即使誰也沒有能力建造蟲洞,或許在浩瀚宇宙的某個角落裏存在著天然的蟲洞。因此讓我們姑且假設在未來的某一天人類的建造或者發現了一個半徑一公里的蟲洞。

我們是否就可以利用來進行星際旅行了呢?初看起來半徑一公里的蟲洞似乎足以滿足星際旅行的要求了,因這樣的半徑在幾何尺度上已經足以讓相當規模的星際飛船通過了。看過科幻電影的人可能對星際飛船穿越蟲洞的特技處理留有深刻的印象。從螢幕上看,飛船周圍充斥著由來自遙遠天際的星光和輻射組成的無限絢麗的視覺幻象,看上去飛船穿越的似乎是時空中的一條狹小的通道。

但實際情況遠比這種幻想來得複雜。事實上了能讓飛船及乘員安全地穿越蟲洞,幾何半徑的大小並不是星際旅行家所面臨的主要問題。按照廣義相對論,物質在通過象蟲洞這樣空間結構高度彎曲的區域,會遇到一個十分棘手的問題,那就是張力。這由於引力場在空間各處的分佈不均勻所造成的,的一種大家熟悉的表現形式就是海洋中的潮汐。由於這種張力的作用,當星際飛船接近蟲洞的時候,飛船上的乘員會漸漸感覺到自己的身體在沿蟲洞的方向上有被拉伸的感覺,而在與之垂直的方向上則有被擠壓的感覺。這種感覺便是由蟲洞引力場的不均勻造成的。一開始,這種張力只是使人稍有不適而已,但隨著飛船與蟲洞的接近,這種張力會迅速增加,距離每縮小十分之一,這種張力就會增加約一千倍。 當飛船距離蟲洞還有一千公里的時候,這種張力已經超出了人體所能承受的極限,如果飛船到這時還不緊折回的話,所有的乘員都將在致命的張力作用下喪命。再往前飛一段距離,飛船本身將在可怕的張力作用下解體,而最終,瘋狂增加的張力將把已經成碎片的飛船及乘員撕成一長串亞原子粒子。從蟲洞另一端飛出的就是這一長串早已無法分辨來源的亞原子粒子!

這就是星際探險者試圖穿越半徑一公里的蟲洞將會遭遇的結局。半徑一公里的蟲洞不是旅行家的天堂,而是探險者的地獄。

因此一個蟲洞要成可穿越蟲洞,一個很明顯的進一步要求就是:飛船及乘員在通過蟲洞時所受到的張力必須很小計算表明,這個要求只有在蟲洞的半徑極其巨大的情況下才能得到滿足[注六]。那究竟要多大的蟲洞才可以作星際旅行的通道呢?計算表明,半徑小於一光年的蟲洞對飛船及乘員生的張力足以破壞物質的原子結構,這是任何堅固的飛船都無法經受的, 更遑論脆弱的飛船乘員了。因此,一個蟲洞要成可穿越蟲洞,其半徑必須遠遠大於一光年。

科幻現實

但另一方面,一光年用日常的距離來衡量雖然是一個巨大的線度,用星際的距離來衡量, 卻也不算驚人。我們所在的銀河系的線度大約是的十萬倍,假如在銀河系與兩百二十萬光年外的仙女座大星雲之間存在一個蟲洞的話從線度上講只不過是一個非常細小的通道。那會不會在我們周圍的星際空間中的存在這樣的通道,只不過還未被我們發現呢?答案是否定的。因半徑一光年的蟲洞正驚人的地方不在於的線度,而在於維持所需的負能量物質的數量。計算表明,維持這樣一個蟲洞所需的負能量物質的數量相當於整個銀河系中所有發光星體品質總和的一百倍!這樣的蟲洞生的引力效應將遠比整個銀河系的引力效應更顯著,如果在我們附近的星際空間中存在這種蟲洞的話,周圍幾百萬光年內的物質運動都將受到顯著的影響,我們早就從的引力場中發現其蹤跡了。

因此不僅在地球上不可能建造可穿越蟲洞,在我們附近的整個星際空間中都幾乎不可能存在可穿越蟲洞而未被發現。

這樣看來,我們只剩下一種可能性需要討論了,那就是在宇宙的其他遙遠角落裏是否有可能存在可穿越蟲洞?對於這個問題,我們也許永遠都無法確切地知道結果,因宇宙實在太大了。但是維持可觀測蟲洞所需的數量近乎于天方夜譚的負能量物質幾乎我們提供了答案。迄今止,人類從未在任何宏觀尺度上發現過負能量物質所有生負能量物質的實驗方法利用的都是微弱的量子效應。了能維持一個可穿越蟲洞,必須存在某種機制把量子效應所生的微弱的負能量物質彙集起來,達到足的數量。但是負能量物質可以被彙聚起來?物理學家們在這方面做了一些理論究,結果表明由量子效應生的負能量物質是不可能無限制地加以彙聚的。負能量物質彙聚得越多,所能存在的時間就會越短。因此一個蟲洞沒有負能量物質是不穩定的,負能量物質太多了也會不穩定!那到底什樣的蟲洞才能穩定的呢?初步的計算表明,只有線度比原子的線度還要小二十幾個數量級的蟲洞才是穩定的!

這一系列結果無疑是非常冷酷的,如果這些結果成立的話,存在可穿越蟲洞的可能性就基本上被排除了,所有那些美麗的科幻故事也就都成了鏡花水月。不過幸運 (或不幸) 的是,上面所敍述的許多結果依據的是還比較前沿-因而相對來說也還比較不成熟-的物理理論。未來的究是否會從根本上動搖這些理論,從而完全推翻我們上面介紹的許多結果,還是一個未知數。退一步講,即使那些物理理論基本成立,上面所敍述的許多結果也只是從那些理論推出的近似結果或特例。比方說,許多結果假定了蟲洞是球對稱的,而實際上蟲洞完全可以是其他形狀的, 不同形狀的蟲洞所要求的負能量物質的數量,所生張力的大小都是不同的。所有這些都表明即使那些物理理論的成立,我們上面提到的結論也不見得是完全打開的方法就是共鳴利用物質間相互吸引原理使兩時空蟲洞正反兩種物質能量互相吸引從而打開,但這兩種能量是光能量與暗能量,英國著名物理學家史蒂芬霍金承認外星人的存在後,又再語出驚人。他在一部紀錄片內討論時間旅行,說明時光機器在科學上並非無可能。例如,如果一艘太空船能以接近光速的速度在宇宙飛行,就可讓船上乘客進入未來。他指出,在瑞士地下的大型子對撞機內,人類已把粒子加速至接近光速運行。

 

“蟲洞”就在四周

物理學家霍金拍攝一部有關宇宙的紀錄片時指出,要進入未來大有兩種方法,第一就是通過所謂的蟲洞。霍金調,蟲洞就在四周,只是小到肉眼很難看見,們存在於空間與時間的裂縫中。如同在3度空間中,時間也有細微的裂縫,而比分子、原子還細小的空間則被命名量子泡沫,蟲洞就存在於其中。不過,霍金表示,這些隧道小到人類無法穿越,但有朝一日也許能夠抓住一個蟲洞,再將無限放大,或許將來也可以建造一個巨大的蟲洞。

霍金指出,理論上時光隧道或蟲洞不但能帶著人類前往其他行星,如果蟲洞兩端位於同一位置,且以時間而非距離間隔,那太空船即可飛入,飛出後仍然接近地球,只是進入所謂遙遠的過去。不過霍金也指出,時光機不能回到過去,因回到過去違反了基本的因果論。

另外,霍金還說,如果科學家能建造速度接近光速的太空船,那太空船必然會因不能違反光速是最大速限的法則,而導致艙內的時間變慢,那飛行一個星期就等於是地面上的100年,也就相當於飛進未來。

 

近光速飛行

歷史上最快的有人駕駛飛行器,是阿波羅十號達到每小時25000英里。但若想在時間中旅行,必須再快2000多倍。需要一部足以帶大量燃料的龐大機器。飛船會不斷加速,在一周內,就可以到達外行星。兩年後,可以達到半光速,飛出太陽系。再兩年後將達到光速的90%,遠離地球約三十萬億英里。發射四年後,飛船就會開始穿越未來。飛船上每度過一小時,地球上將度過兩小時。

再經過兩年開足馬力的旅行,飛船將達到其最高速,也即光速的99%。在這種速度中,飛船上的一天,等於地球上的一年。這時的飛船就正飛入未來了。其他物理學家支持霍金的理論,包括曼徹斯特大學粒子物理學授布賴恩科克斯。科克斯說:當用大型子對撞機把粒子加速,達到光速的99%,粒子經歷的時間,以其時間的七千分之一速率消逝。太空中的數十年,在地球上可能已過去了250萬年。但遺憾的是,有關蟲洞的論述還未被實驗證實。

 

連接黑洞

NASA最新一項科學究資料顯示,黑洞天體很可能是生其他宇宙的蟲洞。如果事實的確如此,那麼它將幫助揭開一個名黑洞資訊悖論的量子謎題,但批評家認為它也可能引發新的問題,例如蟲洞最初是如何形成的。

黑洞是內部具有大引力場的天體,這樣大的引力使得即使是光也無法逃逸。愛因斯坦的廣義相對論認當物質被擠壓成非常小的空間時就會形成黑洞。儘管黑洞無法被直接觀測到,但天文學家已經鑒別了很多很可能是黑洞的天體,主要是基於對環繞在其周圍的物質的觀測。

法國高等科學究所的天體物理學家蒂博·達莫爾(Thibault Damour)和德國不萊梅國際大學的謝爾蓋·索羅杜金(Sergey Solodukhin)這些黑洞天體可能是名蟲洞的結構。

蟲洞是連接時空織布中兩個不同地方的彎曲通道。如果將宇宙想像二維的紙張,蟲洞就是連接這張紙片和另一張紙片的通道。在這種情況下,另一張紙片可能是另一個單獨的宇宙,擁有自己的恒星、星系和行星。達莫爾和索羅杜金究了蟲洞可能的情形,並驚訝的發現如此類似於黑洞以至於幾乎無法區分兩者之間的差別。

 

霍金輻射

物質環繞蟲洞旋轉的方式與環繞黑洞是一樣的,因兩者曲環繞們的時空的方式是相同的。有人提出利用霍金輻射來區分兩者,霍金輻射是指來自黑洞的光和粒子輻射,們具有能量光譜的特性。但是這種輻射非常微弱以至於可能被其他源完全湮沒,例如宇宙大爆炸後殘餘的宇宙微波背景輻射,因此觀測霍金輻射幾乎是不可能的。

另一個可能存在的不同便是,蟲洞可能沒有黑洞所具有的視界。這意味著物質可以進入蟲洞,也可以再次出來。實際上,理論家稱有一類蟲洞會自我包裹,因此並不會生另一個宇宙的入口,而是返回到自身的入口。

 

勇敢者的遊戲

即便如此,這也沒有一個簡單的測試方法。由於蟲洞的具體的形狀不同,物質跌入蟲洞之後可能要花費數十億年之後才能從裏面出來。即使蟲洞的形狀非常完美,宇宙最古老的蟲洞目前也吐出任何物質。

看起來似乎只有一條探尋天文學黑洞的途徑,那就是勇敢的縱身一躍。這對是一個勇敢者的危險遊戲,因如果跳入的是一個黑洞,其大的重力場將會撕裂我們身體的每一個原子;即便幸運的進入了一個蟲洞,內部大的引力仍然是致命的。

假設能倖存下來,而蟲洞恰好是不對稱的,會發現自己處在另一個宇宙的另一邊。還沒等楚,這個蟲洞也許又把吸回到所出發的宇宙入口了。

 

悠悠球運動

太空船也能做這樣的悠悠球運動,達莫爾說道,“(但是)如果使用自己的燃料,就能從蟲洞的引力中逃逸,然後探索另一邊的宇宙。

不過在宇宙這一邊的朋友也許得等上數十億年才能再次見到,因在蟲洞裏的穿行時間將會非常漫長。這樣的延遲使得在蟲洞兩邊的有效通訊變得幾乎不可能。如果能發現或者構建微觀蟲洞,這種延遲可能短至幾秒鐘時間,索羅杜金這樣說道,這潛在的支援了雙邊通訊。

究黑洞形成和蟲洞特性的美國俄勒岡大學尤金分校的斯蒂芬·(Stephen Hsu),也認利用觀測區分黑洞和蟲洞之間差別幾乎是不可能的,至少利用目前的科技是不可能實現的。

 

外來物質

黑洞最重要的特性就是落入黑洞的物體有去無回的臨界點,而對此我們目前還無法進行測試。斯蒂芬說道。但目前被認是黑洞的天體也可能的確是黑洞而非蟲洞,這種情況也並非不可能。目前存在不少關於黑洞形成的可行情景,例如大品質恒星的坍塌,但有關蟲洞是如何形成的則仍是未知數。

蟲洞可能與宏觀的黑洞有所不同,需要一些外來的物質保持自身穩定,而這種外來物質是否實存在又是個未知數。

索羅杜金認蟲洞的形成方式可能與黑洞相差無幾,例如都來自於坍塌的恒星。在這種情境下,物理學家一般認生黑洞,但索羅杜金認量子效應可能會阻止坍縮形成黑洞的過程,轉而形成了蟲洞。

 

微觀黑洞

索羅杜金稱這一機制在更完整的物理學理論下將不可避免,後者統一了重力和量子力學的理論,是物理學界長久以來的夢想和目標。如果這一理論是正確的,那以往我們認會形成黑洞的地方,就可能會形成蟲洞。

而這一猜想並不是沒有方法對其進行測試,有的物理學家認未來的粒子加速器實驗將能夠產生微觀黑洞。這種微觀黑洞有可能放射出可以計算的霍金輻射,以證明生的是黑洞而非蟲洞。但是如果索羅杜金猜想的是正確的話,那形成的會是一個微觀蟲洞,因此將不會生任何輻射。通過這樣簡單的測試就能辨別生的是黑洞還是蟲洞。

蟲洞的另一個優點在於能解決所謂的黑洞資訊悖論。黑洞唯一能釋放出的就是霍金輻射,但這些霍金輻射將如何帶最初落入黑洞天體的原始資訊,目前還楚。這種混亂效應與量子力學相衝突,後者禁止這種資訊的丟失。

從理論上來說,蟲洞要比黑洞好的多,因此不會發生資訊丟失。索羅杜金說道。由於蟲洞沒有視界,物體無需轉化成霍金輻射就能自動離開蟲洞,因此也就不存在資訊丟失的問題。