2014-03-02 10:59:06Morris

[UVA][離散化、Dinic] 11358 - Faster Processing Feasibility

F

Next generation contest - 4

Time Limit – 5 secs

Faster Processing Feasibility

 

The era of technology is so hectic at times! Each & every single day, the crying needs for faster & faster processors are becoming more important than before with the continuously increasing complexity of applications & tasks. One of the solutions that the processor manufacturers are successfully employing nowadays is parallel processing. Scheduling of tasks is a prime concern while designing faster processors having several components working in parallel. We are currently building a new microprocessor that has P logical sub-processors in it. Each of the logical sub-processors can act as an individual processor & process one of the available tasks during a time slot. Note that, a logical sub-processor can process only a single task in one time slot & a task can not be processed by more than one processor during a time slot. Now, you are given the arrival time (the time when a task becomes available to the processors), processing time (the number of time slots necessary to complete processing the task) & deadline (the earliest time when the processing of this task is required to be completed) for T tasks. You have to figure out if it is possible to schedule the tasks using the available resources in such a way that all tasks are completed before their respective deadlines.

Let us be a bit more specific. From now on we shall assume, each time slot equals 1 micro-second. The span of the first time slot is 0 to 1 micro-second while the second time slot is 1 to 2 micro-second & so on.

For example, consider a multi-processor system with 2 logical sub-processors. You are needed to schedule 3 tasks A, B & C with the following data.

Task

Arrival Time

Processing Time

Deadline

A

0

2

2

B

0

3

4

C

1

2

3

 

It is possible to schedule these 3 tasks in the given system so that all the tasks meet their respective deadlines i.e. processing of task A, B & C are completed at (or before) time 2 micro-second, 4 micro-second & 3 micro-second respectively. Look at the following table for a possible schedule.

 

 

Time (micro-second)

Available tasks

Assigned to processor - 1

Assigned to processor – 2

Completed tasks

Due tasks

0

A, B

A

B

-

-

1

A, B, C

A

C

-

-

2

B, C

B

C

A

A

3

B

B

-

A, C

A, C

4

-

-

-

A, C, B

A, C, B

 

Input

The first line of the input is the number of test cases C (1 ≤ C ≤ 50 ). C test cases follow. A test case begins with 2 integers P (1 ≤ P ≤ 40) & T(1 ≤ T ≤ 40), as described earlier. Each of the next T lines gives a task detail. A task detail consists of 3 integers – arrival time, Ai (0 ≤ Ai ≤ 1000), processing time, Ri (1 ≤ Ri ≤ 5000) & deadline, Di (Ai + Ri  ≤ Di  ≤ 10000).  

Output

For each test case, print “FEASIBLE” in a line if there is a possible schedule to meet all the deadlines. Otherwise, print “NO WAY”.

 

Sample Input

Output for Sample Input

2
2 3
0 2 2
0 3 4
1 2 3
2 3
0 2 2
0 3 3
1 2 3

 

FEASIBLE
NO WAY

 

ProblemSetter: Mohammad Mahmudur Rahman
Special Thanks: Ivan Krasilnikov

由於同一份工作不能在同一個時間並行處理,否則可以使用 greedy 方法。

現在只能使用 maxflow 的方式去分配,為防止點數過多,將時間進行離散化處理。

Dinic's algorithm 效率在此圖效率不錯。

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <queue>
#include <stack>
#include <set>
using namespace std;
struct Node {
    int x, y, v;// x->y, v
    int next;
} edge[10005];
int e, head[505], prev[505], record[505];
int level[505], visited[505];
void addEdge(int x, int y, int v) {
    edge[e].x = x, edge[e].y = y, edge[e].v = v;
    edge[e].next = head[x], head[x] = e++;
    edge[e].x = y, edge[e].y = x, edge[e].v = 0;
    edge[e].next = head[y], head[y] = e++;
}
bool buildLevelGraph(int s, int t) {
    memset(level, 0, sizeof(level));
    queue<int> Q;
    Q.push(s), level[s] = 1;
    while(!Q.empty()) {
        int tn = Q.front();
        Q.pop();
        for(int i = head[tn]; i != -1; i = edge[i].next) {
            int y = edge[i].y;
            if(edge[i].v > 0 && level[y] == 0) {
                level[y] = level[tn] + 1;
                Q.push(y);
            }
        }
    }
    return level[t] > 0;
}
int constructBlockingFlow(int s, int t) {
    int ret = 0;
    stack<int> stk;
    memset(visited, 0, sizeof(visited));
    stk.push(s);
    while(!stk.empty()) {
        int now = stk.top();
        if(now != t) {
            for(int i = head[now]; i != -1; i = edge[i].next) {
                int y = edge[i].y;
                if(visited[y] || level[y] != level[now] + 1)
                    continue;
                if(edge[i].v > 0) {
                    stk.push(y), prev[y] = now, record[y] = i;
                    break;
                }
            }
            if(stk.top() == now)
                stk.pop(), visited[now] = 1;
        } else {
            int flow = 1e+9, bottleneck;
            for(int i = t; i != s; i = prev[i]) {
                int ri = record[i];
                flow = min(flow, edge[ri].v);
            }
            for(int i = t; i != s; i = prev[i]) {
                int ri = record[i];
                edge[ri].v -= flow;
                edge[ri^1].v += flow;
                if(edge[ri].v == 0)
                    bottleneck = prev[i];
            }
            while(!stk.empty() && stk.top() != bottleneck)
                stk.pop();
            ret += flow;
        }
    }
    return ret;
}
int maxflowDinic(int s, int t) {
    int flow = 0;
    while(buildLevelGraph(s, t))
        flow += constructBlockingFlow(s, t);
    return flow;
}
int main() {
    int n, m;
    int testcase;
    int i, j, k, x, y;
    int P, T;
    int l[50], r[50], w[50];
    scanf("%d", &testcase);
    while(testcase--) {
        e = 0;
        memset(head, -1, sizeof(head));
        scanf("%d %d", &P, &T);
        int sum = 0;
        set<int> R;
        for(i = 0; i < T; i++) {
            scanf("%d %d %d", &l[i], &w[i], &r[i]);
            sum += w[i];
            R.insert(l[i]);
            R.insert(r[i]);
        }
        int source = T + R.size() + 1, sink = source + 1;
        for(i = 0; i < T; i++)
            addEdge(source, i, w[i]);
        int node = T;
        for(set<int>::iterator it = R.begin(), jt;
            it != R.end(); it++) {
            jt = it;
            jt++;
            if(jt == R.end())
                break;
            int work = *jt - *it;
            for(i = 0; i < T; i++)
                if(*it >= l[i] && *it < r[i])
                    addEdge(i, node, work);
            addEdge(node, sink, work * P);
            node++;
        }
        int ret = maxflowDinic(source, sink);
        printf("%s\n", ret == sum ? "FEASIBLE" : "NO WAY");
    }
    return 0;
}