2013-04-27 12:18:35Morris
[UVA][幾何、半平面交] 10084 - Hotter Colder
Problem E: Hotter Colder
The children's game Hotter Colder is played as follows. Player A leaves the room while player B hides an object somewhere in the room. Player A re-enters at position (0,0) and then visits various other positions about the room. When player A visits a new position, player B announces "Hotter" if this position is closer to the object than the previous position; player B announces "Colder" if it is farther and "Same" if it is the same distance.Input consists of up to 50 lines, each containing an x,y coordinate pair followed by "Hotter", "Colder", or "Same". Each pair represents a position within the room, which may be assumed to be a square with opposite corners at (0,0) and (10,10). For each line of input print a line giving the total area of the region in which the object may have been placed, to 2 decimal places. If there is no such region, output 0.00.
Sample Input
10.0 10.0 Colder 10.0 0.0 Hotter 0.0 0.0 Colder 10.0 10.0 Hotter
Output for Sample Input
50.00 37.50 12.50 0.00
題目說明:
平面上會有一個不知道的在哪的點(x, y)
玩家A從(0,0)出發,然後玩家A會走到下一個點 (nx, ny),
玩家B會跟A講他這個點與上一個走過的點 (lx, ly),
哪個離(x,y) 比較近,如果是 Hotter 代表 (nx, ny) 比較近,反之 (lx, ly)
如果是 Same 的話,直接輸出 0.000 直至最後。
題目分析:
這是一個半平面交的問題,將 (nx, ny) 與 (lx, ly) 做中垂線,
然後用中垂線將這個多邊形一劈兩半,保留其中的一塊,
如果是 Hotter 保留 (nx, ny) 同側的那塊,反之 (lx, ly)。
#include <stdio.h>
#include <math.h>
#include <string.h>
struct Pt {
double x, y;
};
struct Polygon {
Pt p[505];
int n;
};
double calcArea(Polygon &p) {
static int i;
double sum = 0;
p.p[p.n] = p.p[0];
for(i = 0; i < p.n; i++)
sum += p.p[i].x*p.p[i+1].y - p.p[i].y*p.p[i+1].x;
return fabs(sum/2);
}
void print(Polygon &p) {
for(int i = 0; i < p.n; i++)
printf("%lf %lf\n", p.p[i].x, p.p[i].y);
puts("=====");
}
int main() {
int n, w = 10, h = 10;
int i, j, k;
double sx, sy, ex, ey, xi, yi;
char cmd[50];
Polygon A, B, C;
A.n = 4;
A.p[0].x = 0, A.p[0].y = 0;
A.p[1].x = w, A.p[1].y = 0;
A.p[2].x = w, A.p[2].y = h;
A.p[3].x = 0, A.p[3].y = h;
sx = 0, sy = 0;
while(scanf("%lf %lf", &ex, &ey) == 2) {
scanf("%s", cmd);
// ax + by + c = 0
double a, b, c;
#define eps 1e-8
double m = -(sy-ey)/(sx-ex);
a = sx-ex, b = sy-ey;
c = -(a*((sx+ex)/2)+b*((sy+ey)/2));
//printf("%lf x + %lf y + %lf = 0\n", a, b, c);
A.p[A.n] = A.p[0];
B.n = 0, C.n = 0;
Pt intP[2];
int point = 0;
for(i = 0; i < A.n; i++) {
if(point == 1) {
if(B.n == 0 || fabs(B.p[B.n-1].x-A.p[i].x) > eps ||
fabs(B.p[B.n-1].y-A.p[i].y) > eps)
B.p[B.n++] = A.p[i];
} else {
if(C.n == 0 || fabs(C.p[C.n-1].x-A.p[i].x) > eps ||
fabs(C.p[C.n-1].y-A.p[i].y) > eps)
C.p[C.n++] = A.p[i];
}
//printf("(%lf %lf)-(%lf %lf)\n", A.p[i].x, A.p[i].y, A.p[i+1].x, A.p[i+1].y);
if((a*A.p[i].x+b*A.p[i].y+c)*(a*A.p[i+1].x+b*A.p[i+1].y+c) <= eps) {
if(point == 2) continue;
double ta, tb, tc;
double tm = (A.p[i].y-A.p[i+1].y)/(A.p[i].x-A.p[i+1].x);
if(fabs(A.p[i].x-A.p[i+1].x) < eps)
ta = 1, tb = 0, tc = -A.p[i].x;
else
ta = tm, tb = -1, tc = -(A.p[i].x*ta+A.p[i].y*tb);
// ax+by+c = 0, ta*x+tb*y+tc = 0
//printf("%lf x + %lf y + %lf = 0\n", ta, tb, tc);
double rx, ry, r;
r = a*tb-ta*b;
rx = (-c)*tb-(-tc)*b;
ry = a*(-tc)-ta*(-c);
rx = rx/r;
ry = ry/r;
if(fabs(r) < eps) continue; // no intersection
if(point == 1) {
if(fabs(rx-intP[0].x) < eps && fabs(ry-intP[0].y) < eps)
continue;
}
//printf("intersection %lf %lf\n", rx, ry);
intP[point].x = rx, intP[point].y = ry;
if(B.n == 0 || fabs(B.p[B.n-1].x-rx) > eps || fabs(B.p[B.n-1].y-ry) > eps)
B.p[B.n++] = intP[point];
if(C.n == 0 || fabs(C.p[C.n-1].x-rx) > eps || fabs(C.p[C.n-1].y-ry) > eps)
C.p[C.n++] = intP[point];
point++;
}
}
if(point != 2) {
printf("%.2lf\n", calcArea(A));
sx = ex, sy = ey;
continue;
}
int f1, f2;
f1 = (a*B.p[B.n/2].x + b*B.p[B.n/2].y + c) < eps;
if(!strcmp("Same", cmd))
A.n = 0, B.n = 0, C.n = 0;
else if(!strcmp("Hotter", cmd))
xi = ex, yi = ey;
else
xi = sx, yi = sy;
f2 = (a*xi + b*yi + c) < eps;
if(f1 == f2 && point) {// same side
//puts("B side");
A = B;
} else {
//puts("C side");
A = C;
}
while(fabs(A.p[A.n-1].x-A.p[0].x) < eps &&
fabs(A.p[A.n-1].y-A.p[0].y) < eps)
A.n--;
//print(A);
printf("%.2lf\n", calcArea(A));
sx = ex, sy = ey;
}
return 0;
}