2012-05-19 18:36:04Morris

[UVA][BIT] 11525 - Permutation

Problem F
Permutation
Input: Standard Input

Output: Standard Output

 

Given N and K find the N’th permutation of the integers from 1 to K when those permutations are lexicographically ordered.  N starts from 0. Since N is very large N will be represented by a sequence of K non-negative integers S1, S2 ,…, Sk. From this sequence of integers N can be calculated with the following expression.

 

 

Input

First line of the input contains T(≤10) the number of test cases. Each of these test cases consists of 2 lines. First line contains a integer K(1≤K≤50000). Next line contains K integers S1, S2 ,…, Sk.(0≤Si≤K-i).

 

Output

For each test case output contains N’th permutation of the integers from 1 to K. These K integers should be separated by a single space.

 

Sample Input                            Output for Sample Input

4
3
2 1 0
3
1 0 0
4
2 1 1 0
4
1 2 1 0

 

3 2 1
2 1 3
3 2 4 1
2 4 3 1

 


Problemsetter: Abdullah al Mahmud

Special Thanks: Manzurur Rahman Khan

 


假如要找出 3 2 1 的第幾順位,
3 前面有 1 2, 故 2*2!, 2 前面還有 1, 故 1*1!, 最後是 0
因此是 2*2! + 1*1! + 0*0! = 5
因此從 1 開始算 3, 3被選出來
... 算 2, 算 1 ...

#include <stdio.h>

int main() {
    int t, k, i, j, s;
    unsigned C[50001];
    scanf("%d", &t);
    while(t--) {
        scanf("%d", &k);
        for(i = 1; i <= k; i++)
            C[i] = 0;
        for(i = 1; i <= k; i++) {
            j = i;
            while(j <= k) {
                C[j]++;
                j += j&(-j);
            }
        }
        int l, r, m, sum1, sum2;
        for(i = 1; i <= k; i++) {
            scanf("%d", &s);
            s++;
            l = 1, r = k;
            if(i != 1)
                putchar(' ');
            while(l <= r) {
                m = (l+r)>>1;
                j = m, sum1 = 0;
                while(j > 0)    sum1 += C[j], j -= j&(-j);

                if(sum1 == s) {
                    j = m-1, sum2 = 0;
                    while(j > 0)    sum2 += C[j], j -= j&(-j);
                    if(sum1 == sum2+1)
                        break;
                    else
                        r = m-1;
                } else if(sum1 > s)
                    r = m-1;
                else
                    l = m+1;
            }
            printf("%d", m);
            j = m;
            while(j <= k) {
                C[j]--;
                j += j&(-j);
            }
        }
        puts("");
    }
    return 0;
}