[UVA][LIS&LDS] 10534 - Wavio Sequence
Problem D
Wavio Sequence
Input:
Standard
Input
Output: Standard Output
Time Limit: 2 Seconds
Wavio is a sequence of integers. It has some interesting properties.
· Wavio is of odd length i.e. L = 2*n + 1.
· The first (n+1) integers of Wavio sequence makes a strictly increasing sequence.
· The last (n+1) integers of Wavio sequence makes a strictly decreasing sequence.
· No two adjacent integers are same in a Wavio sequence.
For example 1, 2, 3, 4, 5, 4, 3, 2, 0 is an Wavio sequence of length 9. But 1, 2, 3, 4, 5, 4, 3, 2, 2 is not a valid wavio sequence. In this problem, you will be given a sequence of integers. You have to find out the length of the longest Wavio sequence which is a subsequence of the given sequence. Consider, the given sequence as :
1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1.
Here the longest Wavio sequence is : 1 2 3 4 5 4 3 2 1. So, the output
will be 9.
Input
The input file contains less than 75 test cases. The description of each test case is given below: Input is terminated by end of file.
Each set starts with a postive integer, N(1<=N<=10000). In next few lines there will be N integers.
Output
For each set of input print the length of longest wavio sequence in a line.
Sample Input Output for Sample Input
10 1 2 3 4 5 4 3 2 1 10 19 1 2 3 2 1 2 3 4 3 2 1 5 4 1 2 3 2 2 1 5 1 2 3 4 5 |
9 9 1
|
做法 : O(nlogn) 的 LIS LDS
做出來後接起來比較即可
#include <stdio.h>
#include <stdlib.h>
void findLIS(int A[], int LIS[], int n) {
int pos[10000] = {};
int i, j, m, l, r, newSet;
int L = -1;
for(i = 0; i < n; i++) {
l = 0, r = L, newSet = -1;
while(l <= r) {
m = (l+r)/2;
if(pos[m] < A[i]) {
if(m == L || pos[m+1] >= A[i]) {
newSet = m+1;
break;
} else
l = m+1;
} else
r = m-1;
}
if(newSet == -1)
newSet = 0;
pos[newSet] = A[i];
LIS[i] = newSet+1;
if(L < newSet)
L = newSet;
}
}
int main() {
int n, i, j, tmp;
int A[10000], LIS[10000], LDS[10000];
while(scanf("%d", &n) == 1) {
for(i = 0; i < n; i++)
scanf("%d", &A[i]);
findLIS(A, LIS, n);
for(i = 0, j = n-1; i < j; i++, j--)
tmp = A[i], A[i] = A[j], A[j] = tmp;
findLIS(A, LDS, n);
for(i = 0, j = n-1; i < j; i++, j--)
tmp = LDS[i], LDS[i] = LDS[j], LDS[j] = tmp;
int min, ans = 0;
for(i = 0; i < n; i++) {
min = LIS[i] < LDS[i] ? LIS[i] : LDS[i];
min = min*2-1;
if(min > ans)
ans = min;
}
printf("%d\n", ans);
}
return 0;
}