2007-01-21 20:52:39Tiff

試證sin(cosθ)<cos(sinθ)


即證cos(π/2-cosθ)<cos(sinθ)
 ∵ -π<π/2-1≦π/2-cosθ≦π/2+1<π 且 -π<-1≦sinθ≦1<π
 ∴ |sinθ|<|π/2-cosθ| <=> cos(π/2-cosθ)<cos(sinθ)
即證 |sinθ|<|π/2-cosθ|
 ∵ 0<π/2-1≦π/2-cosθ
 ∴|π/2-cosθ|=π/2-cosθ
即證 |sinθ|<π/2-cosθ
 當θ€[2nπ,π+2nπ]時(其中n為整數),|sinθ|=sinθ
  欲證sinθ<π/2-cosθ
  即證sinθ+cosθ=√2 sin(θ+π/4)<π/2
  For all θ€[2nπ,π+2nπ] √2 sin(θ+π/4)≦√2<1.5<π/2
 當θ€[π+2nπ,2π+2nπ]時(其中n為整數),|sinθ|=-sinθ
  欲證-sinθ<π/2-cosθ
  即證-sinθ+cosθ=√2 cos(θ+π/4)<π/2
  For all θ€[π+2nπ,2π+2nπ] √2 cos(θ+π/4)≦√2<1.5<π/2

得證


參考
http://www.wretch.cc/blog/airroger1&article_id=12117587
Tiff 2008-04-14 17:08:15

據說這個在學科能力競賽好像沒拿到半分。