2007-01-21 20:52:39Tiff
試證sin(cosθ)<cos(sinθ)
即證cos(π/2-cosθ)<cos(sinθ)
∵ -π<π/2-1≦π/2-cosθ≦π/2+1<π 且 -π<-1≦sinθ≦1<π
∴ |sinθ|<|π/2-cosθ| <=> cos(π/2-cosθ)<cos(sinθ)
即證 |sinθ|<|π/2-cosθ|
∵ 0<π/2-1≦π/2-cosθ
∴|π/2-cosθ|=π/2-cosθ
即證 |sinθ|<π/2-cosθ
當θ€[2nπ,π+2nπ]時(其中n為整數),|sinθ|=sinθ
欲證sinθ<π/2-cosθ
即證sinθ+cosθ=√2 sin(θ+π/4)<π/2
For all θ€[2nπ,π+2nπ] √2 sin(θ+π/4)≦√2<1.5<π/2
當θ€[π+2nπ,2π+2nπ]時(其中n為整數),|sinθ|=-sinθ
欲證-sinθ<π/2-cosθ
即證-sinθ+cosθ=√2 cos(θ+π/4)<π/2
For all θ€[π+2nπ,2π+2nπ] √2 cos(θ+π/4)≦√2<1.5<π/2
得證
參考
http://www.wretch.cc/blog/airroger1&article_id=12117587
下一篇:試導出滴定曲線方程式
據說這個在學科能力競賽好像沒拿到半分。