2010-11-04 21:49:41龍崎幸

淺談量子計算

        量子計算或量子資訊,基本上就是量子力學跟資訊科學的結合。大家都知道二十世紀實際上是一個資訊的時代,大家開口閉口都是資訊,可是在二十世紀上半期、甚至在初期的時候,有一個相等重要、甚至可能是更重要的發展,就是量子力學。而量子計算跟傳統計算或傳統資訊的不同點,簡單來講,最主要就是所謂「量子平行」跟「量子糾纏」這兩個特點。

        我們先做一個非常簡短的歷史回顧。1936年,涂林(Alan Turing)提出了一個數學模型,這個數學模型後來就變成今日電子計算機的基本數學模型。不過,涂林當初提出這樣一個模型的時候,並不是想造出一個電腦。當時他是英國劍橋大學一個數學系的研究生,以今天來看的話大概就是碩士班的學生。他聽到一位年輕的教授跟他們介紹,當時一個最新的數理邏輯的發現或證明,也就是很有名的所謂哥德爾不完備定理(Godel's incompleteness theorem)。這個定理是說,在一個夠複雜的數學邏輯系統裡面,一定可以找到無限多個在這個邏輯系統裡面是完全合法存在的,但是在這個邏輯系統所容許的規則裡面,卻無法證明到底是正確還是錯誤的。涂林聽到這個定理之後,他覺得是一個震撼(這個定理確實是引起數學界、甚至科學界還有哲學界的震撼)。他希望他能給出另外一個證明方法,也就是所謂機械式的一個證明方法。結果他的那個模型,就是我們今天成為涂林機的一個機械,變成我們今天計算機的一個基本模型。

        從那個時候開始,漸漸的,計算機也變成是大家都認為必須造出來的一個工具,尤其因為二次大戰的發展,因為要破解密碼的關係,使得計算機的發展更顯得迫切。計算機在二次大戰大概快結束的時候,已經差不多要發展出來了,但嚴格講起來,是到了二次大戰之後,電子計算機才真的成形。可是幾乎在電子計算機出現的同時,很多的物理學家還有數學家,無法滿足於所謂涂林機這樣一個模型;他們想知道,有沒有一個計算模型可以超越涂林機,做得比它更快、更好,甚至涂林機裡面沒有辦法回答的問題,它都有辦法回答。在1982和1985年,就特別開了這樣一個國際會議,討論有什麼樣的數學理論或物理理論,可以用來建構超越涂林機的一些模型,有關這些論文後來也被發表成論文集。其中,大家都很熟悉、科普的好朋友費曼(Richard Feynman)先生,在1982年時,就率先提出量子計算的概念。但一直遲至1985年一位叫做杜其(David Deutsch)的這位先生,發表在英國一個雜誌的文章,才正式寫下了所謂量子邱契涂林機(Quantum Church Turing machines),也就是正式給了量子計算機(Quantum computer)這樣一個名詞。杜其這個人,雖然他的姓氏Deutsch是德意志的意思,但他實際上是一位道道地地的英國人。他是在英國牛津,他的專長是理論物理當中更理論的部分,也就是所謂「量子重力理論」(Quantum gravity)。因為從事這方面的理論,他有很多奇怪的想法,比如說「多世界」(many worlds),他覺得因為量子力學跟重力的結合,會產生所謂多世界,像一個樹這樣不斷的分佈、分枝出現,這樣的一個理論。所以杜其是一個蠻有趣、而且會有一些獨異想法的物理學家。1985年的時候,他就正式給了量子計算機這樣的名詞;但事實上,他裡面所提到的這樣一個模型,實際上是太過簡單了,所以不太具有實際的用途。

        到了1994年的時候,修爾(Peter Shor)提出來一個整數快速分解的一個方法,可以破解我們現在很多安全密碼系統裡面,常用到的所謂瑞維斯特-希米爾-艾德曼公開鑰匙密碼演算法(RSA)這樣一個密碼。因為這樣子的一個突破,很多的密碼系統或資訊等等,都會因此而遭到破解。所以美國軍方就特別緊張,投注了很多人力與經費從事這方面的研究。也是從1994年開始,因為這個突破,所以在很多的報章雜誌、媒體上面,大家也漸漸聽到所謂量子計算機(Quantum computer)、量子計算(Quantum computing)這樣的名詞。

        但是在1994年之前,我剛剛已經提到有很多物理學家,就會想一些奇奇怪怪的量子力學跟計算或通訊結合的一些方法。其中一位代表性人物叫班奈特(Charles Bennett),他在1992~1993的時候提出我們今天所謂「量子遠傳」(Quantum teleportation)這樣一個科幻式的方法。到了1996年的時候,一個印度的數學家則提出所謂量子搜尋(Quantum search),也就是在量子的資料庫裡面,如何快速攫取你所需要的資料。