Français Transformateur électrique www.tool-tool
Bewise Inc. www.tool-tool.com Reference source from the internet.
Un transformateur électrique est un convertisseur permettant de modifier les valeurs de tension et d'intensité du courant délivrées par une source d'énergie électrique alternative, en un système de tension et de courant de valeurs différentes, mais de même fréquence et de même forme. Il effectue cette transformation avec un excellent rendement. Il est analogue à un engrenage en mécanique (le couple sur chacune des roues dentées étant l'analogue du courant et la vitesse de rotation étant l'analogue de la tension).
On distingue les transformateurs statiques et les commutatrices. Dans un transformateur statique, l'énergie est transférée du primaire au secondaire par l'intermédiaire du circuit magnétique que constitue la carcasse du transformateur. Ces deux circuits sont alors magnétiquement couplés. Ceci permet de réaliser un isolement galvanique entre les deux circuits. Dans une commutatrice, l'énergie est transmise de manière mécanique entre une génératrice et un moteur électrique.
Vue en coupe d'un transformateur triphasé.
Invention [modifier]
Les principes du transformateur ont été établis en 1831 par Michael Faraday, mais celui-ci ne s'en servi que pour démontrer le principe de l'induction électromagnétique et n'en prévit les applications pratiques .
Lucien Gaulard, jeune électricien français, présente à la Société française des Electriciens, en 1884, un « générateur secondaire », dénommé depuis transformateur.
En 1883, Lucien Gaulard et John Dixon Gibbs réussissent à transmettre pour la première fois, sur une distance de 40 km, du courant alternatif sous une tension de 2000 volts à l'aide de transformateurs avec un noyau en forme de barres.
En 1884 Lucien Gaulard met en service une liaison bouclée de démonstration (133 Hz) alimentée par du courant alternatif sous 2000 volts et allant de Turin à Lanzo et retour (80 km). On finit alors par admettre l'intérêt du transformateur qui permet d'élever la tension délivrée par un alternateur et facilite ainsi le transport de l'énergie électrique par des lignes à haute tension. La reconnaissance de Gaulard interviendra trop tardivement.
Entre-temps, des brevets ont été pris aussi par d'autres. Le premier brevet de Gaulard en 1882 n'a même pas été délivré en son temps, sous prétexte que l'inventeur prétendait pouvoir faire « quelque chose de rien » ! Gaulard attaque, perd ses procès, est ruiné, et finit ses jours dans un asile d'aliénés. Le transformateur de Gaulard de 1886 n'a pas grand chose à envier aux transformateurs actuels, son circuit magnétique fermé (le prototype de 1884 comportait un circuit magnétique ouvert, d'où un bien médiocre rendement) est constitué d'une multitude de fils de fer annonçant le circuit feuilleté à tôles isolées.
Ainsi, en 1885, les Hongrois Károly Zipernowsky, Miksa Déry et Otto Titus Bláthy mettent au point un transformateur avec un noyau annulaire commercialisé dans le monde entier par la firme Ganz à Budapest. Aux USA, W. Stanley développe des transformateurs.
Constitution [modifier]
Il est constitué de deux parties essentielles, le circuit magnétique et les enroulements.
Le circuit magnétique [modifier]
Le circuit magnétique d'un transformateur est soumis à un champ magnétique variable au cours du temps. Pour les transformateurs reliés au secteur de distribution, cette fréquence est de 50 ou 60 Hertz. Le circuit magnétique est généralement feuilleté pour réduire les pertes par courants de Foucault, qui dépendent de l'amplitude du signal et de sa fréquence. Pour les transformateurs les plus courants, les tôles empilées ont la forme de E et de I, permettant ainsi de glisser une bobine à l'intérieur des fenêtres du circuit magnétique ainsi constitué.
Les circuits magnétiques des transformateurs « haut de gamme » ont la forme d'un tore. Le bobinage des tores étant plus délicat, le prix des transformateurs toroïdaux est nettement plus élevé.
Les enroulements [modifier]
Les enroulements sont en général concentriques pour minimiser les fuites de flux
Le conducteur électrique utilisé dépend des applications, mais le cuivre est le matériau de choix pour toutes les applications à fortes puissances. Les fils électriques de chaque tour doivent être isolés les uns des autres afin que le courant circule dans chaque tour. Pour des petites puissances, il suffit d'utiliser des conducteurs magnétiques émaillés pour assurer cette isolation; dans les applications à plus fortes puissance on entoure les conducteurs de papier diélectrique imprégné d'huile minérale. Pour les plus fortes puissances on utilise des conducteurs multi-brins pour limiter l'effet de peau ainsi que les pertes par courants de Foucault.
Le système de refroidissement [modifier]
Dans le domaine de l'électricité en basse tension et dans le domaine de l'électronique, la dissipation thermique des transformateurs s'effectue par simple convection naturelle de l'air autour des enroulements primaires et secondaires.
Dans le cadre des circuits électriques à haute tension et de forte puissance, les transformateurs peuvent être équipés de divers dispositifs de refroidissement :
- ailettes métalliques fixées tout autour de la cuve du transformateur qui évacuent la chaleur par convection naturelle ;
- ailettes fixes associées à un condenseur à circulation forcée de l'huile d'isolation galvanique du transformateur ;
- pour les transformateurs les plus puissants, par exemple ceux des grandes lignes THT de la RTE de 400 à 150 kV, on utilise des systèmes de ventilation forcée d'un important flux d'air associé ou non à un échange thermique avec l'huile de la cuve. Le dispositif de refroidissement est toujours couplé à un système de capteurs de température faisant office de thermostat (commande automatique de la mise en route de la ventilation).
L'huile contenue dans la cuve joue un double rôle : caloporteur et diélectrique. Les PCB ont été longtemps utilisés, mais depuis leur interdiction en 1987 (décret 87-59 du 2 février 1987, référence NOR ENVP8700002D), on utilise essentiellement de l'huile minérale
Enfin signalons que dans le domaine de la radiodiffusion de forte puissance, les transformateurs d'impédance et les transformateurs d'accord sont parfois constitués d'une immense self rigide en cuivre creux dans lequel circule de l'eau pure (l'eau pure est un isolant électrique). Des blocs émetteurs de TDF à Allouis dans le Cher et à St-Aoustrille près d'Issoudun dans l'Indre ont utilisé cette technologie de dissipation thermique.
Fonctionnement du transformateur monophasé [modifier]
Transformateur parfait ou idéal [modifier]
Transformateur monophasé idéal
C'est un transformateur virtuel sans aucune perte. Il est utilisé pour modéliser les transformateurs réels. Ces derniers sont considérés comme une association d'un transformateur parfait et de diverses impédances.
Dans le cas où toutes les pertes et les fuites de flux sont négligées, le rapport du nombre de spires primaires sur le nombre de spires secondaires détermine totalement le rapport de transformation du transformateur.
- Exemple: Un transformateur dont le primaire comporte 230 spires alimenté par une tension sinusoïdale de 230 V de tension efficace, le secondaire qui comporte 12 spires présentera à ses bornes une tension sinusoïdale dont la valeur efficace sera égale à 12 V. (Attention en général 1 spire n'est pas égale à 1 V)
Comme on néglige les pertes, la puissance est transmise intégralement, c'est pourquoi l'intensité du courant dans le secondaire sera dans le rapport inverse soit près de 19 fois plus importante que celle circulant dans le primaire.
De l'égalité des puissances apparentes : , soit : on tire : .
Les pertes de puissance d'un transformateur [modifier]
Les pertes par effet Joule [modifier]
Les pertes par effet Joule dans les enroulements sont appelées également « pertes cuivre », elles dépendent de la résistance de ces enroulements et de l'intensité du courant qui les traverse : avec une bonne approximation elles sont proportionnelles au carré de l'intensité. avec la résistance de l'enroulement i et l'intensité du courant qui le traverse.
Les pertes magnétiques [modifier]
Ces pertes dans le circuit magnétique, également appelées « pertes fer », dépendent de la fréquence et de la tension d'alimentation. À fréquence constante on peut les considérer comme proportionnelles au carré de la tension d'alimentation. ces pertes ont deux origines physiques :
- Les pertes par courants de Foucault. Elles sont minimisées par l'utilisation de tôles magnétiques vernies, donc isolées électriquement les unes des autres pour constituer le circuit magnétique, ce en opposition à un circuit massif.
- Les pertes par hystérésis, minimisées par l'utilisation d'un matériau ferromagnétique doux.
Mesure des pertes [modifier]
La méthode des pertes séparées consiste à placer le transformateur dans deux états :
- Un état pour lequel les pertes Joules sont élevées (fort courant) et les pertes magnétiques très faibles (faible tension). La mise en court-circuit du transformateur (essai en court-circuit) avec une alimentation en tension réduite permet de réaliser ces deux conditions. Les pertes du transformateur sont alors quasiment égales aux pertes Joules.
- Un état pour lequel les pertes magnétiques sont élevées (forte tension) et ou les pertes joules sont très faibles (faible courant). Le fonctionnement à vide (essai à vide), c’est-à-dire sans récepteur relié au secondaire, correspond à ce cas. La puissance consommée au primaire du transformateur est alors quasiment égale aux pertes magnétiques.
On dit que l'on a deux états qui permettent « une séparation » des pertes d'où l'expression « méthode des pertes séparées ». Elles ont également l'avantage de permettre la mesure du rendement avec une consommation de puissance réduite, sans faire l'essai en fonctionnement réel. Ceci est intéressant lorsqu'on réalise les tests d'un transformateur de forte puissance et que l'on ne dispose pas dans l'atelier de la puissance nécessaire pour l'alimenter à son régime nominal. Mis à part pour les plates-formes d'essai chez les constructeurs, cette méthode n'a donc pas grand intérêt pour uniquement connaître le rendement car, dans ce contexte, une mesure directe à puissance nominale (normale) est bien souvent suffisante.
En revanche, dans le cadre de l'électrotechnique théorique, elle est importante car elle permet de déterminer les éléments permettant de modéliser le transformateur.
Les différents types de transformateurs [modifier]
Ces distinctions sont souvent liées aux très nombreuses applications possibles des transformateurs
Autotransformateur [modifier]
Symbole d'un autotransformateur.
1 indique le primaire; 2 le secondaire
Il s'agit d'un transformateur sans isolement entre le primaire et le secondaire.
Dans cette structure, le secondaire est une partie de l'enroulement primaire. Le courant alimentant le transformateur parcourt le primaire en totalité et une dérivation à un point donné de celui-ci détermine la sortie du secondaire. Le rapport entre la tension d'entrée et la tension de sortie est identique à celui du type isolé.
A rendement égal, un autotransformateur occupe moins de place qu'un transformateur ; cela est dû au fait qu'il n'y a qu'un seul bobinage, et que la partie commune du bobinage unique est parcourue par la somme des courants primaire et secondaire. L'autotransformateur n'est intéressant que lorsque les tensions d'entrée et de sortie sont du même ordre de grandeur : par exemple, 230V/115V. Une de ses principales applications est pour utiliser dans un pays un matériel électronique prévu pour un pays où la tension du secteur est différente (États-Unis, Japon...). Il présente cependant l'inconvénient de ne pas présenter d'isolation galvanique entre le primaire et le secondaire (c’est-à-dire que le primaire et le secondaire sont directement connectés), ce qui peut présenter des risques du point de vue de la sécurité des personnes.
Transformateur variable - variac - alternostat [modifier]
Il s'agit d'une variété d'auto-transformateur, puisqu'il ne comporte qu'un seul bobinage. La dérivation de sortie du secondaire peut se déplacer grâce à un contact glissant sur les spires du primaire.
Transformateur d'isolement [modifier]
Le transformateur d'isolement est uniquement destiné à créer un isolement électrique entre plusieurs circuits pour des raisons bien souvent de sécurité ou de résolution de problèmes techniques. Tous les transformateurs à enroulement primaire isolé du (des) secondaire(s) devraient être considérés comme des transformateurs d'isolement ; toutefois, en pratique, ce nom désigne des transformateurs dont la tension de sortie a la même valeur efficace que celle de l'entrée.
Le transformateur d'isolement comporte deux enroulements presque identiques au primaire et au secondaire :
- le nombre de spires du secondaire est souvent très légèrement supérieur au nombre de spires du primaire afin de compenser la faible chute de tension en fonctionnement,
- les sections de fil au primaire et au secondaire sont identiques car l'intensité des courants est la même.
Ils sont, par exemple, largement utilisés dans les blocs opératoires : chaque salle du bloc est équipée de son propre transformateur d'isolement, pour éviter qu'un défaut qui y apparaîtrait n'engendre des dysfonctionnements dans une autre salle.
Un autre intérêt est de pouvoir changer de régime de neutre (cas d'utilisation de matériel informatique et/ou d'équipements électroniques sensibles dans une installation IT).
Transformateur d'impédance [modifier]
Le transformateur est toujours un transformateur d'impédance, mais les électroniciens donnent ce nom aux transformateurs qui ne sont pas utilisés dans des circuits d'alimentation.
Le transformateur d'impédance est principalement destiné à adapter l'impédance de sortie d'un amplificateur à sa charge.
- Ce genre de transformateur était en particulier employé dans la restitution sonore, pour adapter la sortie d'un amplificateur audio à lampes (haute impédance), avec les haut-parleurs destinés à la restitution du son et caractérisés par une impédance basse.
- En électronique audio professionnelle, on utilise toujours des transformateurs pour les entrées et sorties d'appareils haut de gamme, ou bien dans la fabrication de « Di-box » ou boîte de direct. Le transformateur est alors utilisé, non seulement pour adapter l'impédance et le niveau de sortie des appareils (synthétiseurs, basse électrique, etc) aux entrées micro de la console de mixage mais en outre pour symétriser la sortie des appareils connectés.
- En technique des hautes fréquences, on utilise également des transformateurs dont le circuit magnétique est en ferrite ou sans circuit magnétique (aussi appelé transformateur sans noyau) pour adapter les impédances de sortie d'un amplificateur, d'une ligne de transmission et d'une antenne. En effet, pour un transfert optimal de puissance de l'amplificateur vers l'antenne, il faut que le taux d'ondes stationnaires (TOS) soit égal à 1.
De tels montages présentent en outre l'avantage de rendre les appareils connectés beaucoup plus résistants aux perturbations électromagnétiques par une augmentation significative du CMRR (Common Mode Rejection Ratio) ou taux de réjection du mode commun.
Transformateur de mesure [modifier]
Article détaillé : Transformateur de mesure .
Les transformateurs de mesure font l'interface entre le réseau électrique et un appareil de mesure. La puissance disponible au secondaire est définie en fonction des besoins de l'appareil de mesure.
Transformateur d'intensité [modifier]
Article détaillé : Transformateur d'intensité .
Ce type de transformateur, appelé aussi transformateur de courant, est dédié à l'adaptation des courants mis en jeu dans des circuits différents mais fonctionnellement interdépendants.
Un tel transformateur autorise la mesure des courants alternatifs élevés. Il possède une spire au primaire, et plusieurs spires secondaires : le rapport de transformation permet l'usage d'un ampèremètre classique pour mesurer l'intensité au secondaire, image de l'intensité au primaire pouvant atteindre plusieurs kiloampères (kA).
Transformateur de tension [modifier]
Article détaillé : Transformateur de tension.
Ce transformateur est l'un des moyens pour mesurer des tensions alternatives élevées. Il s'agit d'un transformateur qui a la particularité d'avoir un rapport de transformation étalonné avec précision, mais prévu pour ne délivrer qu'une très faible charge au secondaire, correspondant à un voltmètre. Le rapport de transformation permet de mesurer des tensions primaires s'exprimant en kilovolts (kV). On le rencontre en HTA et HTB. D'autres technologies existent, comme celle du diviseur capacitif.
Transformateur haute fréquence [modifier]
Circuit magnétique des transformateurs HF [modifier]
Les pertes par courants de Foucault au sein du circuit magnétique sont directement proportionnelles au carré de la fréquence mais inversement proportionnelles à la résistivité du matériau qui le constitue. Afin de limiter ces pertes, le circuit magnétique des transformateurs HF est réalisé à l'aide de matériaux ferromagnétiques isolants :
- les ferrites douces : oxydes mixtes de fer et de cuivre ou de zinc ;
- les matériaux nanocristallins.
Transformateur d'impulsions [modifier]
Ce type de transformateur est utilisé pour la commande des thyristors, triacs et des transistors. Il présente, par rapport à l’opto-coupleur, les avantages suivants: fonctionnement possible à fréquence élevée, simplification du montage, possibilité de fournir un courant important, bonne tenue en tension.
Transformateur triphasé [modifier]
Justification [modifier]
Dans les réseaux électriques triphasés, on pourrait parfaitement envisager d'utiliser 3 transformateurs, un par phase. Dans la pratique, l'utilisation de transformateurs triphasés (un seul appareil regroupe les 3 phases) est généralisée : cette solution permet la conception de transformateurs bien moins coûteux, avec en particulier des économies au niveau du circuit magnétique. Les transformateurs monophasés ne sont en fait guère utilisés, sauf pour de très grosses puissances apparentes (typiquement supérieures à 500 MVA), où le transport d'un gros transformateur triphasé est problématique et incite à l'utilisation de 3 unités physiquement indépendantes.
Couplages existants [modifier]
Pour un transformateur triphasé, il existe 3 types de couplage d’enroulement :
- Le couplage étoile, définit par la lettre Y.
- Le couplage triangle, définit par la lettre D ou Δ.
- Le couplage zig-zag, définit par la lettre Z.
Indice de couplage [modifier]
C'est la caractéristique d'un transformateur triphasé indiquant le type de couplage réalisé au primaire et au secondaire ainsi que le déphasage entre le système de tensions primaires et le système de tensions secondaires. Les systèmes triphasés de tension sont : « triangle » (D ou d) et « étoile » (Y ou y). La première lettre de l'indice de couplage est toujours en majuscule et indique le système triphasé à tension la plus élevée ; la deuxième lettre est en minuscule et indique le système à tension la plus basse. Dans le système « étoile », le « neutre » (point central de l'étoile) peut être sorti au bornier du transformateur : ceci est indiqué par la présence de la lettre N (ou n) dans l'indice de couplage. Il existe également le couplage zig-zag (z), utilisé majoritairement au secondaire ; il possède un neutre. Ce couplage permet, lors de la perte d'une phase au primaire, d'avoir au secondaire une tension pratiquement identique sur les trois phases. Enfin, l'indice de couplage est complété par un « indice horaire » qui donne, par pas de 30°, le déphasage horaire en 12èmes de tour (comme sur une montre) entre le primaire et le secondaire du transformateur (ex.: 11= 11x30° = 330° en sens horaire ou 30° en sens anti-horaire).
Par exemple, un indice de couplage « Dyn11 » définit donc un transformateur dont :
- le système triphasé de tension élevé est en « triangle » ;
- le système triphasé de tension basse est en « étoile » avec neutre sorti (indiqué par le « n ») ;
- le décalage entre les deux systèmes est de 330° (= - 30° ou bien 11 * 30°).
les couplages les plus utilisés sont : Yyn0, Yyn6, Yzn5, Yzn11, Dyn5, Dyn11.
Transformateur biphasé-triphasé [modifier]
Transformateurs de Scott [modifier]
Diagramme des transformateurs de Scott
歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具、協助客戶設計刀具流程、DIN or JIS 鎢鋼切削刀具設計、NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計、超高硬度的切削刀具、醫療配件刀具設計、複合式再研磨機、PCD地板專用企口鑽石組合刀具、NSK高數主軸與馬達、專業模具修補工具-氣動與電動、粉末造粒成型機、主機版專用頂級電桿、PCD V-Cut刀、捨棄式圓鋸片組、粉末成型機、主機版專用頂級電感、’汽車業刀具設計、電子產業鑽石刀具、木工產業鑽石刀具、銑刀與切斷複合再研磨機、銑刀與鑽頭複合再研磨機、銑刀與螺絲攻複合再研磨機等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!
BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool.com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan
Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting tool、aerospace tool .HSS DIN Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、NAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end mill、disc milling cutter,Aerospace cutting tool、hss drill’Фрезеры’Carbide drill、High speed steel、Compound Sharpener’Milling cutter、INDUCTORS FOR PCD’CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drill、Tapered end mills、CVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool. INDUCTORS FOR PCD . POWDER FORMING MACHINE ‘Single Crystal Diamond ‘Metric end mills、Miniature end mills、Специальные режущие инструменты ‘Пустотелое сверло ‘Pilot reamer、Fraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’POWDER FORMING MACHINE’Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、Staple Cutter’PCD diamond cutter specialized in grooving floors’V-Cut PCD Circular Diamond Tipped Saw Blade with Indexable Insert’ PCD Diamond Tool’ Saw Blade with Indexable Insert’NAS tool、DIN or JIS tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills’end mill grinder’drill grinder’sharpener、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angel carbide end mills、Carbide torus cutters、Carbide ball-nosed slot drills、Mould cutter、Tool manufacturer.
ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな
情報を受け取って頂き、もっと各産業に競争力プラス展開。
弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、
豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。
弊社は各領域に供給できる内容は:
(3)鎢鋼エンド・ミル設計
(4)航空エンド・ミル設計
(5)超高硬度エンド・ミル
(7)医療用品エンド・ミル設計
弊社の製品の供給調達機能は:
(4)オートメーション整備調達
弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。
Bewise Inc. talaşlı imalat sanayinde en fazla kullanılan ve üç eksende (x,y,z) talaş kaldırabilen freze takımlarından olan Parmak Freze imalatçısıdır. Çok geniş ürün yelpazesine sahip olan firmanın başlıca ürünlerini Karbür Parmak Frezeler, Kalıpçı Frezeleri, Kaba Talaş Frezeleri, Konik Alın Frezeler, Köşe Radyüs Frezeler, İki Ağızlı Kısa ve Uzun Küresel Frezeler, İç Bükey Frezeler vb. şeklinde sıralayabiliriz.
BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.
BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.