2008-04-01 14:39:47BW-chen willy

Tungsten carbide www.tool-tool.com

Bewise Inc. www.tool-tool.com Reference source from the internet.
Tungsten carbide
Tungsten carbide milling bits
Identifiers
CAS number [12070-12-1]
Properties
Molecular formula WC
Molar mass 195.86 g·mol−1
Appearance grey-black solid
Density 15.8 g·cm−3, solid
Melting point

2870 °C, 5198 °F (3143K)
Boiling point

6000°C, 10832 °F (6273K)
Solubility in water Insoluble
Structure
Crystal structure Hexagonal
Hazards
EU classification not listed
Related compounds
Other anions Tungsten boride
Tungsten nitride
Other cations Molybdenum carbide
Titanium carbide
Silicon carbide
Except where noted otherwise, data are given for
materials in their standard state
(at 25 °C, 100 kPa)
Infobox disclaimer and references

Monotungsten carbide, WC, or Ditungsten Carbide, W2C, is a chemical compound containing tungsten and carbon, similar to titanium carbide. Tungsten is a very hard and dense metal, mined from Wolframite ore and symbolized by a (W) on the periodic table of elements. It melts at an extraordinary 6,192 degrees Fahrenheit–the highest melting point of all metals. On its own, tungsten is vulnerable to scratches and damage just like any other metal, such as titanium and steel. Tungsten does not gain its extreme hardness until it is combined with a carbon alloy, transferring it into tungsten carbide (WC) with a hardness between 8.5 and 9.5 on the Mohs hardness scale. Tungsten carbide is four times harder than titanium, twice as hard as steel, is virtually unscratchable, and has been widely used for decades in industrial applications such as cutting tools, mining machinery, and rocket engine nozzles. Its extreme hardness makes it useful in the manufacture of cutting tools, abrasives and bearings, as a cheaper and more heat-resistant alternative to diamond. Tungsten carbide is also used as a scratch-resistant material for jewelry including watch bands and wedding rings.

[edit] Uses in machine tools

Carbide cutting surfaces are often useful when machining through materials such as carbon steel or stainless steel, as well as in situations where other tools would wear away, such as high-quantity production runs. Sometimes, carbide will leave a better finish on the part, and allow faster machining. Carbide tools can also withstand higher temperatures than standard high speed steel tools. The material is usually tungsten-carbide cobalt, also called ”cemented carbide”, a metal matrix composite where tungsten carbide particles are the aggregate and metallic cobalt serves as the matrix. The process of combining tungsten carbide with cobalt is referred to as sintering or Hot Isostatic Pressing (HIP). During this process cobalt eventually will be entering the liquid stage and WC grains (>> higher melting point) remain in the solid stage. As a result of this process cobalt is embedding/cementing the WC grains and thereby creates the metal matrix composite with its distinct material properties. The naturally ductile cobalt metal serves to offset the characteristic brittle behavior of the tungsten carbide ceramic, thus raising its toughness and durability. Such parameters of tungsten carbide can be changed significantly within the carbide manufacturers sphere of influence, primarily determined by grain size, cobalt content, dotation (e.g. aloy carbides) and carbon content.

Machining with carbide can be difficult, as carbide is more brittle than other tool materials, making it susceptible to chipping and breaking. To offset this, many manufacturers sell carbide inserts and matching insert holders. With this setup, the small carbide insert is held in place by a larger tool made of a less brittle material (usually steel). This gives the benefit of using carbide without the high cost of making the entire tool out of carbide. Most modern face mills use carbide inserts, as well as some lathe tools and endmills.

To increase the life of carbide tools, they are sometimes coated. Four such coatings are TiN (titanium nitride), TiC (titanium carbide), Ti(C)N (titanium carbide-nitride), and TiAlN (Titanium Aluminum Nitride). (Newer coatings, known as DLC (Diamond Like Coating) are beginning to surface, enabling the cutting power of diamond without the unwanted chemical reaction between real diamond and iron.) Most coatings generally increase a tool’s hardness and/or lubricity. A coating allows the cutting edge of a tool to cleanly pass through the material without having the material gall (stick) to it. The coating also helps to decrease the temperature associated with the cutting process and increase the life of the tool. The coating is usually deposited via thermal CVD and, for certain appilcations, with the mechanical PVD method. However if the deposition is performed at too high temperature, an eta phase of a Co6W6C tertiary carbide forms at the interface between the carbide and the cobalt phase, facilitating adhesion failure of the coating.

[edit] Military use
Tungsten carbide is often used in armor-piercing ammunition, especially where depleted uranium is not available or not politically acceptable. The first use of W2C projectiles occurred in Luftwaffe tank-hunter squadrons, which used 37 mm autocannon equipped Ju-87G Stuka attack planes to destroy Soviet T-34 tanks in WWII. Owing to the limited German reserves of tungsten, W2C material was reserved for making machine tools and small numbers of projectiles for the most elite combat pilots, like Hans Rudel. It is an effective penetrator due to its high hardness value combined with a very high density.

Tungsten carbide ammunition can be of the sabot type (a large arrow surrounded by a discarding push cylinder) or a subcaliber ammunition, where copper or other relatively soft material is used to encase the hard penetrating core, the two parts being separated only on impact. The latter is more common in small-caliber arms, while sabots are usually reserved for artillery use.

Tungsten carbide is also an effective neutron reflector and as such was used during early investigations into nuclear chain reactions, particularly for weapons. A criticality accident occurred at Los Alamos National Laboratory on 21 August 1945 when Harry K. Daghlian, Jr. accidentally dropped a tungsten carbide brick onto a plutonium sphere causing the sub-critical mass to go critical with the reflected neutrons.

[edit] In sports

Hard carbides, especially tungsten carbide, are used by athletes, generally on poles which impact hard surfaces. Trekking poles, used by many hikers for balance and to reduce pressure on leg joints, generally use carbide tips in order to gain traction when placed on hard surfaces (like rock); such carbide tips last much longer than other types of tips. Rocks along many popular hiking trails, such as the Appalachian Trail and Pacific Crest Trail, are scratched and pockmarked from hundreds or thousands of impacts from pole tips.[citation needed]

While ski pole tips are generally not made of carbide, since they do not need to be especially hard even to break through layers of ice, rollerski tips usually are. Roller skiing emulates cross country skiing and is used by many skiers to train during warm weather months. Because skiers require traction on bitumen (asphalt) carbide tips are used in the sport.[citation needed]

Some tire manufacturers, such as Nokian and Schwalbe, offer bicycle tires with tungsten carbide studs for better traction on ice. These are generally preferred over steel studs because of their wear resistance.

[edit] Domestic use

Tungsten carbide is used as the rotating ball in the tips of ballpoint pens to disperse ink during writing[1].

Tungsten carbide can now be found in the inventory of some jewelers, most notably as the primary material in men’s wedding bands. When used in this application the bands appear with a lustrous dark hue often buffed to a mirror finish. The finish is highly resistant to scratches and scuffs, holding its mirror-like shine for years. A danger associated with this use is the occasional need to remove rings in the course of emergency medical treatment. Emergency rooms are usually equipped with jewelers’ saws that can easily cut through gold and silver rings without injuring the patient when the ring cannot be slipped off easily. However, these saws are incapable of cutting through tungsten carbide.[2]

Tungsten carbide rings can actually be removed in an emergency situation by cracking them into pieces with standard vice grip–style locking pliers. Although standard ring cutting tools cannot be used due to the hardness of this material, there are specialty cutters available that are just as effective on tungsten carbide as they are on gold and platinum.

Many manufacturers of this emerging jewelry state that the use of a cobalt binder may cause unwanted reactions between the cobalt and the natural oils on human skin. Skin oils cause the cobalt to leach from the material. This is said to cause possible irritation of the skin and permanent staining of the jewelry itself. Many manufacturers now advertise that their jewelry is ”cobalt free”. This is obtained by substituting the cobalt with nickel as a binder.[citation needed]

歡迎來到Bewise Inc.的世界,首先恭喜您來到這接受新的資訊讓產業更有競爭力,我們是提供專業刀具製造商,應對客戶高品質的刀具需求,我們可以協助客戶滿足您對產業的不同要求,我們有能力達到非常卓越的客戶需求品質,這是現有相關技術無法比擬的,我們成功的滿足了各行各業的要求,包括:精密HSS DIN切削刀具、協助客戶設計刀具流程、DIN or JIS 鎢鋼切削刀具設計、NAS986 NAS965 NAS897 NAS937orNAS907 航太切削刀具,NAS航太刀具設計、超高硬度的切削刀具、醫療配件刀具設計、汽車業刀具設計、電子產業鑽石刀具、木工產業鑽石刀具等等。我們的產品涵蓋了從民生刀具到工業級的刀具設計;從微細刀具到大型刀具;從小型生產到大型量產;全自動整合;我們的技術可提供您連續生產的效能,我們整體的服務及卓越的技術,恭迎您親自體驗!!

BW Bewise Inc. Willy Chen willy@tool-tool.com bw@tool-tool.com www.tool-tool.com skype:willy_chen_bw mobile:0937-618-190 Head &Administration Office No.13,Shiang Shang 2nd St., West Chiu Taichung,Taiwan 40356 http://www.tool-tool..com / FAX:+886 4 2471 4839 N.Branch 5F,No.460,Fu Shin North Rd.,Taipei,Taiwan S.Branch No.24,Sec.1,Chia Pu East Rd.,Taipao City,Chiayi Hsien,Taiwan

Welcome to BW tool world! We are an experienced tool maker specialized in cutting tools. We focus on what you need and endeavor to research the best cutter to satisfy users’ demand. Our customers involve wide range of industries, like mold & die, aerospace, electronic, machinery, etc. We are professional expert in cutting field. We would like to solve every problem from you. Please feel free to contact us, its our pleasure to serve for you. BW product including: cutting tool、aerospace tool .HSS DIN Cutting tool、Carbide end mills、Carbide cutting tool、NAS Cutting tool、NAS986 NAS965 NAS897 NAS937orNAS907 Cutting Tools,Carbide end mill、disc milling cutter,Aerospace cutting tool、hss drill’Фрезеры’Carbide drill、High speed steel、Milling cutter、CVDD(Chemical Vapor Deposition Diamond )’PCBN (Polycrystalline Cubic Boron Nitride) ’Core drill、Tapered end mills、CVD Diamond Tools Inserts’PCD Edge-Beveling Cutter(Golden Finger’PCD V-Cutter’PCD Wood tools’PCD Cutting tools’PCD Circular Saw Blade’PVDD End Mills’diamond tool ‘Single Crystal Diamond ‘Metric end mills、Miniature end mills、Специальные режущие инструменты ‘Пустотелое сверло ‘Pilot reamer、Fraises’Fresas con mango’ PCD (Polycrystalline diamond) ‘Frese’Electronics cutter、Step drill、Metal cutting saw、Double margin drill、Gun barrel、Angle milling cutter、Carbide burrs、Carbide tipped cutter、Chamfering tool、IC card engraving cutter、Side cutter、NAS tool、DIN or JIS tool、Special tool、Metal slitting saws、Shell end mills、Side and face milling cutters、Side chip clearance saws、Long end mills、Stub roughing end mills、Dovetail milling cutters、Carbide slot drills、Carbide torus cutters、Angel carbide end mills、Carbide torus cutters、Carbide ball-nosed slot drills、Mould cutter、Tool manufacturer.

Bewise Inc. www.tool-tool.com

ようこそBewise Inc.の世界へお越し下さいませ、先ず御目出度たいのは新たな

情報を受け取って頂き、もっと各産業に競争力プラス展開。

弊社は専門なエンド・ミルの製造メーカーで、客先に色んな分野のニーズ、

豊富なパリエーションを満足させ、特にハイテク品質要求にサポート致します。

弊社は各領域に供給できる内容は:

(1)精密HSSエンド・ミルのR&D

(2)Carbide Cutting tools設計

(3)鎢鋼エンド・ミル設計

(4)航空エンド・ミル設計

(5)超高硬度エンド・ミル

(6)ダイヤモンド・エンド・ミル

(7)医療用品エンド・ミル設計

(8)自動車部品&材料加工向けエンド・ミル設計

弊社の製品の供給調達機能は:

(1)生活産業~ハイテク工業までのエンド・ミル設計

(2)ミクロ・エンド・ミル~大型エンド・ミル供給

(3)小Lot生産~大量発注対応供給

(4)オートメーション整備調達

(5)スポット対応~流れ生産対応

弊社の全般供給体制及び技術自慢の総合専門製造メーカーに貴方のご体験を御待ちしております。

BW специализируется в научных исследованиях и разработках, и снабжаем самым высокотехнологичным карбидовым материалом для поставки режущих / фрезеровочных инструментов для почвы, воздушного пространства и электронной индустрии. В нашу основную продукцию входит твердый карбид / быстрорежущая сталь, а также двигатели, микроэлектрические дрели, IC картонорезальные машины, фрезы для гравирования, режущие пилы, фрезеры-расширители, фрезеры-расширители с резцом, дрели, резаки форм для шлицевого вала / звездочки роликовой цепи, и специальные нано инструменты. Пожалуйста, посетите сайт www.tool-tool.com для получения большей информации.

BW is specialized in R&D and sourcing the most advanced carbide material with high-tech coating to supply cutting / milling tool for mould & die, aero space and electronic industry. Our main products include solid carbide / HSS end mills, micro electronic drill, IC card cutter, engraving cutter, shell end mills, cutting saw, reamer, thread reamer, leading drill, involute gear cutter for spur wheel, rack and worm milling cutter, thread milling cutter, form cutters for spline shaft/roller chain sprocket, and special tool, with nano grade. Please visit our web www.tool-tool.com for more info.