2011-6-13‧小型天文攝影赤道儀之自動PEC(周期誤差修正)作業實務規劃
‧筆者追隨聖人的腳步,從小就很賤所以會做許多卑鄙的事情(論語:「吾少也賤故多能鄙事」)。
‧在 Google 和 Yahoo! 搜尋「
說到周期誤差,這算是小型赤道儀的問題,天文台的大型赤道儀齒數有360齒(甚至500齒以上)的話,而且減速齒輪系統有加強設計的話,周期誤差都可以低於平地大氣擾動(但仍高於高山大氣擾動)。
小型赤道儀現在也有抑制周期誤差的簡單裝置,因為減速齒輪有安裝感應器,在追蹤速度由快轉慢的位置會感應,以180齒赤道儀來說,這樣的感應點每運轉約8分鐘會來一次,所謂『PEC學習8分鐘』的原因,就在於只要運轉8分鐘就一定會碰觸過這個由快轉慢的轉折點,開始PEC(周期誤差修正)的行程計時。
現在赤道儀有自動裝置,就不用像這樣人工計時規劃行程了
如果感應點設計在追蹤速度由慢轉快的位置,那就是設計值得討論,因為這是由加速轉為減速的轉折,如果設計在由慢轉快的位置可能會單純一些。
有這樣的PEC(周期誤差修正)裝置,確實會方便很多,但是這是數位格數化的工業式簡單作法,沒有辦法做到類比式一樣的藝匠級精密度(參考http://mypaper.pchome.com.tw/8cm/post/1322156177),而且極軸沒能完美對準的話,不管上面說得再多也是多餘的。
有些重點還是要持續強調的,首先是選擇導星的問題,恆星的導星不需要選擇視野內的恆星,像拍M42星雲時,選擇天狼星或北極星都一樣可以當作導星的,因為單一極軸偏差事件對全天恆星的導星偏差是一樣的(也就是說全天每一個恆星的導星偏移偏移的方位角度都會是同步的,不能說100%完全沒差,但在一般攝影期間偏差量會遠低於大氣擾動),所以沒有找不到導星的問題,真正的問題是不知道全天隨便找一個超亮恆星都可以當作導星,這一點確實違背坊間常識,手工導星或光電導星做一次就知道,極軸誤差越小越有效(把北極星導入極望視野中央附近就夠了,不必精確準位,數學上的效果就足以充分成立了)。 在相同的極軸偏差場合,無論是用天狼星或北極星做為導星,兩者都會同時呈現幾乎100%相同的情形,連筆者也無法分辨兩者差異,所以完全沒必要以視野內的暗星做為導星,也不存在有找不到導星的問題。依據下表粗估上圖的極軸偏差只有0.008度角(28.8秒角‧請勿奢望強求極望每次做到這種失格水準),修正方向如下圖。
如果可以隨意找亮星來導星,這樣導星鏡組合的選擇性就寬廣許多,「窺管」就是下一 次瞄準配件進化,卻也會是一次逆進化。另外一個討論,就是很多導星不佳是技術不良所致,但是卻常把責任歸咎於望遠鏡剛性不足有形變,其實曝光也就那幾分鐘而已,現代數位攝影又沒有什麼相互則不軌(又稱互換則不依)之類的問題,不如擔心風吹要好好固定約束避免晃動比較實在,大家擔心剛性問題結果望遠鏡越買越重,其實導星失敗的責任分配比重如何分配,應該還有檢討空間,當然用光電導星來敷衍也是速效方法,有了光電導星就可以把很多問題打包起來拋諸腦後。 對於官派學閥的巨大望遠鏡而言,考量望遠鏡重力形變而做離軸導星離軸導星是有必要,業餘小鏡沒有這個顧慮,也不該把導星不良責任隨便誣賴到形變上頭,因為看相片就可以檢討出來,依據望遠鏡結構來看重力形變會有特別的方向性,誤判機率低於30%。不同的導星不良因素都有特徵可循,看相片可以稍微猜測出來各種因素比重 ,建議先做到下面這樣自動追蹤再追究有無形變。 做到這個程度導星超簡單‧赤道儀極軸偏差是難以估計的微小 (這是筆者第一次用單星雙軸法校正‧因為是初體驗故花了兩小時)
有些評估是說光電導星效果有好有壞,其實這也是有可能改善的,善於運用 極軸管理技術,可以讓光電導星的工作負擔降低很多,各方因素各退一步,光電感知和運作介入效率就會提升,在北半球只要極軸微微升舉就可以,升舉的角度計算可以參考以下連結,大家只要照自己的赤道儀精度做比例增減就可以,也就是精度6.5秒角的赤道儀要升舉0.2度。看到這裡會覺得一頭霧水是正常的,以上大多屬於在台灣本地多年來逐漸發展的技術,台灣以外文獻找不到是正確無誤,二十幾年來在台灣大約只有幾人理解,早先在本格推理全有見解沒有隱藏,逐篇參考就可以慢慢瞭解。
2010-04-26‧極軸管理理論最速實戰‧赤道儀卡卡篇 ※精度6.5秒角的意思是周期誤差全幅13秒角,高級赤道儀要加計大氣擾動全幅3秒角,例如精度4秒角的要以5.5秒角計算(周期誤差全幅11秒)。 |