2011-07-11 21:31:45幻羽

科技版~超遜偵探~UOD之74~*太陽星雲→冥古宙...*探索



太陽星雲相信是讓
地球所在的太陽系形成的氣體雲氣,這個星雲假說最早是在1734年由伊曼紐·斯威登堡提出的。在1755年,熟知斯威登堡工作的康德將理論做了更進一步的開發,他認為在星雲慢慢的旋轉下,由於引力的作用雲氣逐漸坍塌和漸漸變得扁平,最後形成恆星行星拉普拉斯在1796年也提出了相同的模型。這些可以被認為是早期的宇宙論。

當初僅適用於我們自己太陽系的形成理論,在我們的銀河系內發現了超過200個外太陽系之後,理論學家認為這個理論應該要能適用整個宇宙中的行星形成。

假說主張一個行星系統原始的型態應該是一個巨大的(典型的直徑應該有~10,000天文單位),由非常低溫的星際氣體和一部分巨大的分子雲組成,大致成球形的雲氣。這樣的一個星雲一旦有足夠的密度,在本身的重力作用下便會開始收縮,也可能經由鄰近區域產生的重力波(像是超新星造成的震波)壓迫了分子雲,造成重力塌縮的開始。星雲的成分將反映在形成的恆星上,像我們自己太陽系的星雲相信是由98%來自大霹靂(以質量計算),以及2%來自早期死亡的恆星拋回星際空間的重元素組成。重元素所佔的比例就是所謂的星雲的金屬性;在統計上,金屬性高的恆星(也就是在金屬含量較高的星雲中形成的恆星)較有可能誕生行星。一旦開始,太陽星雲的收縮就會慢慢的、但無可避免的加速。

在塌縮中,有三種物理過程會塑造星雲:溫度上升、自轉加速和平坦化。溫度的上升是因為原子加速向中心掉落並深入重力井中,並變得更為緊密,碰撞更為頻繁:重力位能 被轉換成動能或是熱能。其次,即使當初極為細微的,太陽星雲只要有一點點的淨自轉(角動量),會因為角動量的守恆, 星雲的尺寸縮小時就必需轉得更快。最後,星雲必須成為扁平的盤狀,稱為原行星盤,是因為當氣體的小滴碰撞和合併時,它們運動的平均值傾向於淨角動量的方向。

對八塊不同年代,但都在太陽系形成的最初三百萬年內,的隕石所做的地質分析顯示,大約在太陽形成的一百萬至二百萬年,太陽系曾經遭受鐵-60的轟擊,其來源可能是和太陽在同一個區域內誕生,但短命的巨型恆星成為超新星所導致的。

一個密度不斷增加的原恆星會累積成為太陽星雲的重心。在行星在盤中形成的過程中,原恆星會持續的繼續變得更為緊密,直到一千萬至五千萬年後,它最後終於達到核融合所需要的溫度和壓力,這時恆星就誕生了。一顆這樣的年輕恆星(金牛T星)所發出恆星風,比形成恆星的力量強大許多,最後將會吹散掉剩餘在行星盤的氣體,並且結束主要的吸積過程(特別是氣體巨星的)。像在恆星生命中的許多過程,在原恆星階段所花費的時間也取決於質量:質量越大塌縮的越快。

在原行星盤的氣體,同時間內,從重力崩潰中心的熱化中,當溫度逐漸降低,塵粒(金屬和矽化物)、冰(含氫的,像甲烷)和顆粒從氣體中被凝聚出來(固化)。這些顆粒在相互間輕柔的碰撞和靜電的作用下,開始增生的程序。氣體的原子和分子的量雖然豐富,但因為運動的快速使得靜電不足以約束它們的行動,因此不會增生。在盤中佔有98%質量的氫和氦,在太陽星雲中仍是不能凝聚的氣體。

在盤中的固體成分是以原先存在於星雲中的微塵粒為種子形成的,這些星際介質中的顆粒直徑通常都小於一微米,但經由在原行星盤中的碰撞,它們的大小可以增長成 微行星 (照字義講是非常小的行星)。這些塵粒最初散佈在整個盤內,但預期會如下雨般的集中在盤的中段:就如同當初分子雲因重力塌縮而形成盤狀,所以這些顆粒沉降在盤面的中段,但因為沒有丟失角動量,所以不會沿著徑向朝原恆星的方向移動。不同大小的顆粒,以不同的速度落下,沿途也會蒐集更多的塵粒。在隨機的任意增長下,比例上,較大的塵粒增長的也較快;這樣的狀況也使得表面積越大的塵粒越容易和其它的塵粒遭遇和結合。

數量龐大且蓬鬆的塵粒,也能對氣體產生阻擋與吸附的功能。這也可能在行星形成之前,讓固體無須聚集在新形成的恆星上。高速的撞擊也可能打碎形成的維行星,這意味著塵粒和微行星是可以互相轉換的。在盤面上湍流在這些碰撞中扮演一種角色:如果湍流太強烈,落向中間平面的雨滴會受到阻礙,同時在微粒間破壞性的碰撞也會很普遍。一旦微行星的數量變得充足且夠大,它們的重力會幫助更多的顆粒凝聚。強烈的湍流也許會妨礙重力引起的凝聚,導致成長只能經由兩顆的互撞。然而,如果顆粒要長成大約1公里大小的微行星,必須要歷時大約10,000年。

因為微行星的數量眾多,並且散佈在原行星盤中,就有許多可能發展成行星系統。小行星被認為是剩餘的微行星,彼此間逐漸磨損成越來越小的碎片,同時,彗星則是在行星系中距離較遠的是微行星。隕石是落到行星表面的微形星樣品,並且提供我們許多太陽系形成的訊息。原始型態的隕石體是被撞碎的低質量微行星的大片碎塊,沒有因為重力而發生分化;同時,分化過的隕石體則是質量較大的微行星被撞擊後的大片碎塊。只有最大的那些微行星能在遭受到低質量微行星的撞擊後還能夠繼續的成長。

當微行星成長時,它們的數量逐漸減少,碰撞的頻率也會降低。由於自然成長的隨機性,使得微行星成長的速率各自不同,而有些會成長的比其他的都大。當微行星繞著新生的恆星轉動時,動態摩差使得微行星的動能(動量)保持著平均的分佈,因此最巨大的運動的速度也最慢,軌道也趨近於圓形;而較小的微行星運動的速度較快,軌道的扁率也較大。值得注意的是,運動越遲緩的天體有越大的碰撞截面積,重力則可以提高一顆微行星攔截到另一顆微行星的半徑。

必然的,越大越慢的微行星能更加有效的兼併周圍共同成長中的微行星;而速度較快、質量較低的微行星就難以繼續成長。這迅速的導致逃離過程,在盤內每一個區域中最大的微行星將成為各區的主宰,會比微行星海中其他的成長的更快。這些大質量的個體完全的掌握在盤中的固體物質,稱為寡頭執政,意味著少數規則;這種過程稱為寡頭成長。這些少數的微行星在大小上迅速的增加,在寡頭成長開始前,已經有數十公里的直徑,將成長到幾百公里,最終可以到數千公里的直徑。

寡頭成長的過程會自我設限:每一個寡頭都有固定的哺養區(取決於他的碰撞截面積),一但所有共同成長的微行星都被吸附了,就不會再繼續成長了。令人半信半疑的是這些區域的大小是否有足夠的固體,能夠讓寡頭者成長到類地行星的大小,因為理論上這些區域的微行星只能讓寡頭者成長到數百公里的大小。 然而,可能是湍流再次起了作用,因為它能夠增加或減少微行星的角動量,提供任何形式的徑向運動組合。這或許能穩定的提供新的材料給哺養區,讓寡頭者能繼續的成長。

無論寡頭者是如何的繼續成長,它們在(在凍結線的內側)一百萬年內可以達到的典型大小是0.5至1個地球質量上下, 已經大到足夠被稱為原行星。因為有更高密度的固體物質可以利用,在盤的外側可以生長得更大。在類地行星的區域內可能有幾打的寡頭者彼此遠離的散佈著,在動態性的隔離下,即使經過數百萬年或數千萬年也不會碰撞在一起。

在原行星盤內的溫度是不一致的,並且這是了解地球型和木星型行星之間分化的鑰匙。在凍結線內側的溫度太高(超過150K)使氫化物不能凝聚:它們仍然保持氣體狀態。能夠被堆積的只有金屬和矽酸鹽類的塵粒。因此在這個區域的微行星整個都由岩石和金屬組成,例如小行星,並且組成類地行星。

在凍結線的外側,由氫組成的水、甲烷和氨都能夠凝固成固體,成為'冰'的顆粒並且堆積起來。岩石和金屬的塵粒依然可以利用,但氫化物的數量更為豐富,不僅遠遠的超過,而且隨處都是。因此在這一區域的微行星以冰為主體,而僅有少量的金屬與岩石在內。

古柏帶歐特雲的天體、彗星、海王星巨大的衛星-崔頓,或許還有冥王星和他的衛星-凱倫,都是'髒雪球'的例子。由於有許多的固體物質可以使用,即使在碰撞較不頻繁和較低的速度下(在更大的軌道),這些微行星依然可以發展成非常巨大的行星(質量大約是地球的10倍),使得它們的引力足以吸附氨氣和甲烷,甚至是氫氣。一旦開始這樣的程序,它們將迅速的增長,因為在盤中佔有98%的氫和氦,會使它們的質量大增,而且引力網也會張得更大。

很快的,類木型的微行星不再像是由冰冷的微行星組成的,由於大量的氫氣和氦氣或多或少的都會使得巨大的氣體雲核心密度更為堅實。然後這些類木型的氣體球-在與太陽系相似的比喻下,逐漸的產生重力塌縮、加熱、提高轉速和趨向扁平。一些類木行星衛星可能也在行星本身類似的機制下形成,在原行星的重力塌縮中,從被濃縮的原行星盤中的塵粒中凝聚而成。這或許可以解釋,在我們的太陽系中,類木行星有如此眾多的衛星,和為何自轉得如此快速。當年輕的恆星發出的強風將剩餘的氣體和塵粒從恆星盤吹散進入其外的星際空間時,類木行星的成長就結束了。

以最簡單的說法,在最內側的巨大原行星核形成星盤內密度最高的區域,並且動態時間(典型的時標是碰撞)是最短的;因為這個天體位在盤內氣體最密集的區域,能及早達到捕捉氣體所需要的臨界質量,並且和環繞的氣體有最長的共生時間。在我們自己太陽系內,木星是在凍結線外側最大的原行星核,履行前述的規則,成為系統內最大的行星。實際上,過程可能很複雜, 行星遷移湍流會使流程混淆;與現今觀察到的系外行星比較,在我們自己系統內的行星發展也許,甚至反倒是有些異常的。

最後,在恆星風吹掉盤中的氣體之後,還有大量的原行星和微行星被留下來。 在超過一千萬至一億年的週期中,這些原行星-典型的質量界於月球和數個地球之間-會互相攝動,直到軌道相互橫越並發生碰撞為止。這些天體經由碰撞的結果,最後成為系統內的行星。這種碰撞:相信是原地球和火星大小原行星的碰撞,形成了現在的地球和月球。這種程序是高度隨機的;一個與我們相似的類地系統的形成,可能很快就會結束。所能產生的內行星也許比我們在太陽系內觀察到的更少,但也可能更多。

較小的微行星,在數量上也會比較多,在恆星系統內存在的時間也會比較長久。這些天體也許會在" 清除鄰里 "的過程中被行星清掃掉,可能會被投擲到外面遙遠的邊緣(在我們的太陽系是歐特雲),或僅是持續的輕推進入內側與其他的行星碰撞或相對是穩定的軌道。這種連番轟擊的時期可能長達數億年,並且也許會在地質上留下一些可以看見的撞擊坑痕跡。有些論點認為,只要在系統內還有可以利用的小岩石或冰凍的天體,這個階段就還未真正的完成。1994年, 舒梅克-李維九號彗星撞擊木星所展示的能量,正好彰顯了小行星或彗星撞擊地球可能的威脅。

在我們自己的太陽系,歸結於2:1的共振軌道穿越過木星和土星軌道之間,相信更容易上演這種劇情。來自外圍盤面的大量微行星災難性的干擾,這個過程被稱為晚期重轟擊

星雲假說可以有效的解釋太陽系中一些主要的現象:

1.行星和衛星的規則運動(所有的行星都幾乎在同一個平面上,以接近圓形的軌道,以相同的方向繞著太陽公轉,而且所有的自轉也幾乎在同方向。)

2.類地行星和類木行星有明顯的區別(質量、與太陽的距離、組成、衛星和環系統)

3.小天體(小行星和彗星,無論週期的長或短)

4.例外的趨向(類地的衛星、轉軸傾角、不同平面的木衛、崔頓)

目前星雲假說面臨的挑戰:1.古柏帶迷失的質量 2.崔頓的捕獲過程 3.天王星的側身自轉 4.系外行星發現的熱木星 5.在聯星和三合星系統內發現的系外行星 6.在系外行星發現的較高偏心率行星。

在行星吸積的過程中,在原行星盤中使用吸積盤這個詞彙會造成混淆。原行星盤有時就是指吸積盤,因為在年輕的金牛T星-原恆星仍然在收縮中,而且氣體物質也許仍繼續向盤中掉落,在盤面內側邊緣的表面持續成長。

然而,這個意思不能與行星形成過程的吸積混淆。在上下文中,吸積提到塵粒的冷卻,固化的塵粒和冰環繞著在原行星盤中的原始太陽,碰撞和結合在一起共同的生長,包含可以量度大小的微行星和高能量的碰撞。

另一方面,木星或許有屬於自己的吸積盤,是詞彙中原本的意義。在雲氣中被捕獲的氫和氦氣體收縮、提高轉速、扁平化、和沉積氣體進入每一顆類木原行星的表面;同時,在盤內的固態塵粒堆積在微行星上,最後會形成木星的衛星。

地球歷史,在地球由原始太陽星雲的部份物質構成後計起,科學家估計大約有四十五億七千萬之久。而因為表述這麼長久的時間有所困難,可將地球形成的時間設為凌晨零時,而現代則為翌日的凌晨零時,將地球的歷史模擬為二十四小時,每大約代表五萬三千年,而大爆炸宇宙形成的時刻,則大約在一百三十七億年前,以此模擬時間來說,約等於三日前,即地球誕生前兩日。

地球伴隨著太陽系誕生:太陽系誕生之初,是以巨大並不斷旋轉的由塵埃與氣體組成的雲團的形態存在。它是由大爆炸所生成的組成,同時亦有著由很久以前的星球內部所合成的其它元素

地球誕生前十五至三十分鐘(等於大約四十六億年前),一個鄰近的恆星可能形成了超新星爆炸。這對太陽星雲傳送了一個震盪波,並使之收縮。

因為雲團旋轉,引力慣性將雲團壓為一個圓碟,與其旋轉軸成垂直。大部份質量集中在中央並開始加熱。與此同時,因為引力使得物質環繞塵埃粒子緊縮,使得圓碟剩餘部份開始分解為環狀物。細少的碎片互相碰撞並組成較大的碎片。而組成的地球物質並眾集在距中央約一億五千萬公里的地帶。當太陽收縮並被加熱,核融合開始,而因此形成的太陽風則清空了在圓碟內大部份沒有收縮並組成較大個體的物質,只剩下少量的元素。

之後,較重的元素聚集於太陽附近,形成了體積小,密度高的星體(類地行星);較輕的元素則聚集於離太陽較遠的地方,形成了體積大,密度低的星體(類木行星),而地球則是距離太陽第三近的行星。

月球的起源仍然眾說紛紜,但以巨大撞擊假設的支持證據最多。地球可能並非惟一的在距離太陽一億五千萬公里處生成的行星。所以科學家們假設了另一顆原始行星在距離太陽與地球一億五千萬公里處,即第四個或第五個拉格朗日點處形成。此行星被命名為忒亞,並假設其較現在的地球為小,大約為火星的大小與質量。

其運行軌道剛開始時應該較為穩定,但其後被不斷增加質量的地球所擾亂。忒亞開始迴轉並向地球靠攏,最後在大約為假設時鐘的上午0時11分(大約四十五億三千三百萬年前),其以一個低斜的角度與地球發生碰撞。其低速與低角度並不足以毀滅地球,但足以使大部份地殼被噴出。構成忒亞的重金屬沉入地球的地核內,而剩餘的物質與噴出物則在數周內冷礙為一個獨立個體。

在其自身的重力影響下,大約於一年內,其成為一個較為球狀的個體,即是月球。而人們亦相信這次撞擊使地球的自轉軸傾斜了23.5°,使地球出現四季。(一個簡單,完美的星體應是自轉軸沒有傾斜並沒有分明的季節。)其亦可能加速了地球的自轉速度並使地球出現了板塊構造。

冥古宙早期地球與現在的世界十分不同。當時沒有海洋,大氣層裡亦沒有氣。小行星與太陽系形成後餘下的物質不斷撞擊。這些撞擊與放射性崩解產生的熱、殘熱與收縮壓力產生的熱相結合,使得地球在這階段完全為熔化狀態。較重的元素沉向中心,而較輕的元素則升至表面,從而製造了地球的不同層次(請參看「地球構造」)。

地球的早期大氣層包括了圍繞其存在的太陽星雲裡的物質,特別是較輕的氣體如,但是太陽風與地球自身的熱力清空了這層大氣層。地球表面慢慢地冷凝,在(大約為假設時鐘)的上午0時47分形成了固體的地殼(一億五千萬年內)。在大約是假設時鐘的上午3時至4時(四十億至三十八億年前),地球經歷了一個重型星體撞擊時期。蒸氣由地殼裡逃出,而更多的氣體由火山內釋出,從而形成了第二道大氣層。更多的水份在火流星撞擊地球時帶來。

這時地球開始冷卻,在三十八億年前;假設時鐘的上午4時(七億五千萬年內)雲層開始形成,雨水落下從而形成海洋,而且可能更早時已出現這些現象。(最近的證據提出海洋可能在四十二億年前開始形成,即此條目假設時鐘的上午1時50分。)這道新的大氣層可能包含了甲烷水蒸氣二氧化碳氮氣與其他含量較少的氣體。而氧氣則被氫氣或地表上的礦物質束縛著。火山活動出現頻密,而且因為沒有臭氧層防護,紫外線大量照射在地球表面。

冥古宙是太古宙之前的一個,開始於地球形成之初,結束於38億年前,但依據不同的文獻可能有不同的定義。冥古宙一詞最初是由普雷斯頓·克羅德Preston Cloud)於1972年所提出的,原本是用來指已知最早岩石之前的時期。

因為這個時期的岩石資料很少還存在於地球上,所以並沒有正式的細分。但月球的地質時代的某些主要區分是落在冥古宙這個時期的,所以有時會將這些區分用在指地球同一時間的時期上。

20世紀的最後一個年代,地質學家從格陵蘭西部、加拿大西北部和西澳大利亞州裡確認到了某些冥古宙的岩石。現已知最早岩石的結構(依蘇阿綠岩帶)是由格凌蘭有著約38億年歷史的沉積層,混著一點貫穿了岩石的火山岩脈所組成。零散的鋯石結晶沉積在西加拿大西澳傑克山中的沉積物裡,最早的約有四十四億年之久的歷史-非常接近地球形成的推測時間。

格陵蘭的沉積層中含有帶狀鐵礦的地層。裡面可能含有有機,且這意味著那時很有可能已經出現可行光合作用生命了。但已知最古老的化石(於澳洲)是在那時的數億年之後了。

大撞擊後期發生於冥古宙中,且對地球月亮產生了影響。

在形成地球的物質當中,曾經存在過大量的。在地球的形成時期,其質量比現在的小,水分子也就更容易掙脫重力。據推測,當時氣和氣在大氣層中持續不斷地逸散,然而,現時大氣中高密度的稀有氣體卻相對缺乏,這表明,在早期大氣層中可能發生過什麼劇變。

有理論認為,在地球的年輕時期,它的一部分曾受過撞擊而分裂,分裂出去的部分後來形成了月球。然而在這種說法下,撞擊應該會令一到兩個大區域融化,現時的組成成份卻與完全融化的假設並不相符,事實上也很難將巨大的岩石完全融化並混在一起。不過相當一部分的物質仍被此次撞擊所蒸發,在這顆年輕的行星周圍形成了一個由岩石蒸汽組成的大氣層。

岩石蒸汽在兩千年間逐漸凝固,留下了高溫的易揮發物,之後有可能形成了一個混有氫氣和水蒸氣的高密度二氧化碳大氣層。另外儘管當時表面溫度有230℃,但液態的海洋依然能夠存在,這得益於CO2大氣層帶來的高氣壓。隨著冷凝過程繼續進行,海水通過溶解作用除去了大氣中的大部分CO2,不過其含量水平在新地層和地幔循環出現時產生了激烈的震蕩。

鋯石的研究發現,液態水必然已存在了有四十四億年之久,非常接近地球形成的時刻。 這需要有大氣層的存在。

鋯石(Zircon),是天然礦物的一種,化學成份為矽酸(Zirconium Silicate, ZrSiO4)。鋯石是一種矽酸鹽礦物,它是提煉金屬鋯的主要礦石。鋯石廣泛存在於酸性火成岩,也產於變質岩和其他沉積物中。鋯石的化學性質很穩定,所以在河流的砂礫中也可以見到寶石級的鋯石。鋯石有很多種,不同的鋯石會有不同的顏色,如紅、黃、橙、褐、綠或無色透明等等。經過切割後的寶石級鋯石很像是鑽石。鋯石過去還被叫作鋯英石或風信子石。

太古宙(Archean)是地質時代中的一個宙,開始於同位素年齡3800百萬年(Ma),結束於2500百萬年。太古宙時期有細菌和低等藍藻存在。太古宙屬於前寒武紀,上一個宙是冥古宙,下一個宙是元古宙。太古宙包括了始太古代、古太古代、中太古代、新太古代。

元古宙(Proterozoic,符號PR),又稱元古代、原生代,是地質時代中的一個時期,開始於同位素年齡2500Ma(百萬年前),結束於542.0±1.0Ma。這個時期已經發現了許多菌類、藻類植物化石和古代微生物化石,因此也被稱為「菌藻時代」。

元古宙包括了古元古代、中元古代、新元古代。元古代中期發生了全球性的大冰期,世界各地都發現了冰川遺迹。在元古代末期,開始出現了腔腸動物、環節動物和節肢動物,但這些動物都沒有堅硬的骨骼,所以化石上只是留下印痕等遺迹。

元古代也曾發生廣泛的地殼運動,在前期是地球主要的造山時期。在中國北方為「呂梁運動」。元古代時期的地層中蘊藏有豐富的鐵礦、銅礦和稀土金屬礦物。元古宙屬於前寒武紀(也是元古宙較不正式的名稱),上一個宙是太古宙,下一個宙是顯生宙。

顯生宙是距今5.7億年以來有大量生物化石出現的時期。顯生宙表示在這個時期地球上有顯著的生物出現。而那些看不到或者很難見到生物的時代被稱做隱生宙。*(地質時代~1)*